440 research outputs found

    Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease

    Get PDF
    Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting

    Climatic risks and impacts in South Asia: extremes of water scarcity and excess

    Get PDF
    This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change

    Muscle acetylcholine receptor conversion into chloride conductance at positive potentials by a single mutation

    Get PDF
    Charge selectivity forms the basis of cellular excitation or inhibition by Cys-loop ligand-gated ion channels (LGICs), and is essential for physiological receptor function. There are no reports of naturally occurring mutations in LGICs associated with the conversion of charge selectivity. Here, we report on a CHRNA1 mutation (α1Leu251Arg) in a patient with congenital myasthenic syndrome associated with transformation of the muscle acetylcholine receptor (AChR) into an inhibitory channel. Performing patch-clamp experiments, the AChR was found to be converted into chloride conductance at positive potentials, whereas whole-cell currents at negative potentials, although markedly reduced, were still carried by sodium. Umbrella sampling molecular dynamics simulations revealed constriction of the channel pore radius to 2.4 Å as a result of the mutation, which required partial desolvation of the ions in order to permeate the pore. Ion desolvation was associated with an energetic penalty that was compensated for by the favorable electrostatic interaction of the positively charged arginines with chloride. These findings reveal a mechanism for the transformation of the muscle AChR into an inhibitory channel in a clinical context

    Caracol, Belize, and Changing Perceptions of Ancient Maya Society

    Full text link

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    Immunopotentiation of Trivalent Influenza Vaccine When Given with VAX102, a Recombinant Influenza M2e Vaccine Fused to the TLR5 Ligand Flagellin

    Get PDF
    BACKGROUND: Currently controversy exists about the immunogenicity of seasonal trivalent influenza vaccine in certain populations, especially the elderly. STF2.4×M2e (VAX102) is a recombinant fusion protein that links four copies of the ectodomain of influenza virus matrix protein 2 (M2e) antigen to Salmonella typhimurium flagellin, a TLR5 ligand. The objectives of this study were to assess the feasibility of giving VAX102 and TIV in combination in an effort to achieve greater immunogenicity and to provide cross-protection. METHODOLOGY/PRINCIPAL FINDINGS: Eighty healthy subjects, 18-49 years old, were enrolled in May and June 2009 in a double-blind, randomized, controlled trial at two clinical sites. Subjects were randomized to receive either TIV + VAX102 or TIV + placebo. Both arms tolerated the vaccines. Pain at the injection site was more severe with TIV + VAX102. Two weeks after immunization the HAI responses to the H1 and H3 antigens of TIV were higher in those that received TIV + VAX102 than in TIV + placebo (309 vs 200 and 269 vs 185, respectively), although statistically non-significant. There was no difference in the HAI of the B antigen. In the TIV + VAX102 arm, the geometric mean M2e antibody concentration was 0.5 µg/ml and 73% seroconverted. CONCLUSIONS/SIGNIFICANCE: The combination of TIV + VAX102 has the potential to increase the immune response to the influenza A components of TIV and to provide M2e immunity which may protect against influenza A strains not contained in seasonal TIV. TRIAL REGISTRATION: ClinicalTrials.gov NCT00921973

    Regional Endothermy in a Coral Reef Fish?

    Get PDF
    Although a few pelagic species exhibit regional endothermy, most fish are regarded as ectotherms. However, we document significant regional endothermy in a benthic reef fish. Individual steephead parrotfish, Chlorurus microrhinos (Labridae, formerly Scaridae) were tagged and their internal temperatures were monitored for a 24 h period using active acoustic telemetry. At night, on the reef, C. microrhinos were found to maintain a consistent average peritoneal cavity temperature 0.16±0.005°C (SE) warmer than ambient. Diurnal internal temperatures were highly variable for individuals monitored on the reef, while in tank-based trials, peritoneal cavity temperatures tracked environmental temperatures. The mechanisms responsible for a departure of the peritoneal cavity temperature from environmental temperature occurred in C. microrhinos are not yet understood. However, the diet and behavior of the species suggests that heat in the peritoneal cavity may result primarily from endogenous thermogenesis coupled with physiological heat retention mechanisms. The presence of limited endothermy in C. microrhinos indicates that a degree of uncertainty may exist in the manner that reef fish respond to their thermal environment. At the very least, they do not always appear to respond to environmental temperatures as neutral thermal vessels and do display limited, but significant, visceral warming
    corecore