440 research outputs found
Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease
Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting
Climatic risks and impacts in South Asia: extremes of water scarcity and excess
This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change
Muscle acetylcholine receptor conversion into chloride conductance at positive potentials by a single mutation
Charge selectivity forms the basis of cellular excitation or inhibition by Cys-loop ligand-gated ion channels (LGICs), and is essential for physiological receptor function. There are no reports of naturally occurring mutations in LGICs associated with the conversion of charge selectivity. Here, we report on a CHRNA1 mutation (α1Leu251Arg) in a patient with congenital myasthenic syndrome associated with transformation of the muscle acetylcholine receptor (AChR) into an inhibitory channel. Performing patch-clamp experiments, the AChR was found to be converted into chloride conductance at positive potentials, whereas whole-cell currents at negative potentials, although markedly reduced, were still carried by sodium. Umbrella sampling molecular dynamics simulations revealed constriction of the channel pore radius to 2.4 Å as a result of the mutation, which required partial desolvation of the ions in order to permeate the pore. Ion desolvation was associated with an energetic penalty that was compensated for by the favorable electrostatic interaction of the positively charged arginines with chloride. These findings reveal a mechanism for the transformation of the muscle AChR into an inhibitory channel in a clinical context
Recommended from our members
Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions
In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1–40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol–radiation and aerosol–cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land–sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land–sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level pressure (SLP) anomalies over Asia and low SLP anomalies over the WNP, associated with a weakened EASM. In response to emissions from both regions warming and moistening over the WNP plays an important role and determines the time scale of the response
Floristic composition of the Montane Forest in the Almadina-Barro Preto axis, Southern Bahia, Brazil
Immunopotentiation of Trivalent Influenza Vaccine When Given with VAX102, a Recombinant Influenza M2e Vaccine Fused to the TLR5 Ligand Flagellin
BACKGROUND: Currently controversy exists about the immunogenicity of seasonal trivalent influenza vaccine in certain populations, especially the elderly. STF2.4×M2e (VAX102) is a recombinant fusion protein that links four copies of the ectodomain of influenza virus matrix protein 2 (M2e) antigen to Salmonella typhimurium flagellin, a TLR5 ligand. The objectives of this study were to assess the feasibility of giving VAX102 and TIV in combination in an effort to achieve greater immunogenicity and to provide cross-protection. METHODOLOGY/PRINCIPAL FINDINGS: Eighty healthy subjects, 18-49 years old, were enrolled in May and June 2009 in a double-blind, randomized, controlled trial at two clinical sites. Subjects were randomized to receive either TIV + VAX102 or TIV + placebo. Both arms tolerated the vaccines. Pain at the injection site was more severe with TIV + VAX102. Two weeks after immunization the HAI responses to the H1 and H3 antigens of TIV were higher in those that received TIV + VAX102 than in TIV + placebo (309 vs 200 and 269 vs 185, respectively), although statistically non-significant. There was no difference in the HAI of the B antigen. In the TIV + VAX102 arm, the geometric mean M2e antibody concentration was 0.5 µg/ml and 73% seroconverted. CONCLUSIONS/SIGNIFICANCE: The combination of TIV + VAX102 has the potential to increase the immune response to the influenza A components of TIV and to provide M2e immunity which may protect against influenza A strains not contained in seasonal TIV. TRIAL REGISTRATION: ClinicalTrials.gov NCT00921973
Regional Endothermy in a Coral Reef Fish?
Although a few pelagic species exhibit regional endothermy, most fish are regarded as ectotherms. However, we document significant regional endothermy in a benthic reef fish. Individual steephead parrotfish, Chlorurus microrhinos (Labridae, formerly Scaridae) were tagged and their internal temperatures were monitored for a 24 h period using active acoustic telemetry. At night, on the reef, C. microrhinos were found to maintain a consistent average peritoneal cavity temperature 0.16±0.005°C (SE) warmer than ambient. Diurnal internal temperatures were highly variable for individuals monitored on the reef, while in tank-based trials, peritoneal cavity temperatures tracked environmental temperatures. The mechanisms responsible for a departure of the peritoneal cavity temperature from environmental temperature occurred in C. microrhinos are not yet understood. However, the diet and behavior of the species suggests that heat in the peritoneal cavity may result primarily from endogenous thermogenesis coupled with physiological heat retention mechanisms. The presence of limited endothermy in C. microrhinos indicates that a degree of uncertainty may exist in the manner that reef fish respond to their thermal environment. At the very least, they do not always appear to respond to environmental temperatures as neutral thermal vessels and do display limited, but significant, visceral warming
- …
