15 research outputs found
Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma
Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells.
Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance.
Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer
Cohorts and consortia conference: a summary report (Banff, Canada, June 17–19, 2009)
Epidemiologic studies have adapted to the genomics era by forming large international consortia to overcome issues of large data volume and small sample size. Whereas both cohort and well-conducted case-control studies can inform disease risk from genetic susceptibility, cohort studies offer the additional advantages of assessing lifestyle and environmental exposure-disease time sequences often over a life course. Consortium involvement poses several logistical and ethical issues to investigators, some of which are unique to cohort studies, including the challenge to harmonize prospectively collected lifestyle and environmental exposures validly across individual studies. An open forum to discuss the opportunities and challenges of large-scale cohorts and their consortia was held in June 2009 in Banff, Canada, and is summarized in this report. © Springer Science+Business Media B.V. 2010
From value added tax to a damage and value added tax partially based on life cycle assessment: principles and feasibility
info:eu-repo/semantics/publishe