19 research outputs found

    International and intercultural differences in arguments used against road safety policy measures

    Get PDF
    Policy measures in the field of road safety are not easily implemented for several reasons. Interventions can be undertaken in a multitude of policy areas, but it is often uncertain how effective the measures are. Moreover, policymakers may be reluctant to implement road safety policy measures because of the expected high costs and/or perceived low public support. To understand the arguments used against policy measures for road safety, a survey was conducted in ten countries (China, the United States, the United Kingdom, Belgium, Austria, Sweden, Greece, France, Nigeria, and Argentina). Respondents were presented with ten possible road safety measures and asked whether they would support or oppose them, what arguments their opinion was based on, and what the effect of the measure would be on them individually. This paper describes the main findings of the research and then zooms in on three counterarguments: restriction of mobility, discrimination, and unjustifiability of state interventions, as well as on three of the measures considered—compulsory use of ISA systems, mandatory cycle helmets, and screening of older motorists. With this research, previous results on the level of public support have been confirmed, and new insights have been gained. If people feel safe when using a particular transport mode, they are less conscious of the need for additional or stricter measures affecting their transport mode. The perceived restriction of human liberties, fear of discrimination, and resistance to state interventions fuel opposition against measures. Moreover, people from different countries vary in what they consider fair and unfair, which is linked to the national culture and social organization. Even if a measure was perceived to be unfair from a certain perspective (e.g., discrimination), some respondents supported the measure. Our research also illustrates that even people who recognize that a measure would be effective might oppose it because they think it is not justified from at least one perspective, for instance, an excessive restriction of freedom

    Involvement of yeast HSP90 isoforms in response to stress and cell death induced by acetic acid

    Get PDF
    Acetic acid-induced apoptosis in yeast is accompanied by an impairment of the general protein synthesis machinery, yet paradoxically also by the up-regulation of the two isoforms of the heat shock protein 90 (HSP90) chaperone family, Hsc82p and Hsp82p. Herein, we show that impairment of cap-dependent translation initiation induced by acetic acid is caused by the phosphorylation and inactivation of eIF2 alpha by Gcn2p kinase. A microarray analysis of polysome-associated mRNAs engaged in translation in acetic acid challenged cells further revealed that HSP90 mRNAs are over-represented in this polysome fraction suggesting preferential translation of HSP90 upon acetic acid treatment. The relevance of HSP90 isoform translation during programmed cell death (PCD) was unveiled using genetic and pharmacological abrogation of HSP90, which suggests opposing roles for HSP90 isoforms in cell survival and death. Hsc82p appears to promote survival and its deletion leads to necrotic cell death, while Hsp82p is a pro-death molecule involved in acetic acid-induced apoptosis. Therefore, HSP90 isoforms have distinct roles in the control of cell fate during PCD and their selective translation regulates cellular response to acetic acid stress.This work was supported by Fundacao para a Ciencia e Tecnologia and COMPETE/QREN/EU (PTDC/BIA-MIC/114116/2009), and by the Canadian Institute for Health Research (MOP 89737 to MH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Osmotic stress sensitizes naturally resistant cells to TNF-alpha-induced apoptosis

    No full text
    Most cells are naturally resistant to TNF-alpha-induced cell death and become sensitized when NF-kappaB transactivation is blocked or in the presence of protein synthesis inhibitors that prevent the expression of anti-apoptotic genes. In this report we analyzed the role of osmotic stress on TNF-alpha-induced cell death. We found that it sensitizes the naturally resistant HeLa cells to TNF-alpha-induced apoptosis, with the involvement of an increase in the activity of several kinases, the inhibition of Bcl-2 expression, and a late increase on NF-kappaB activation. Cell death occurs regardless of the enhanced NF-kappaB activity, whose inhibition produces an increase in apoptosis. The inhibition of p38 kinase, also involved in NF-kappaB activation, significantly increases the effect of osmotic stress on TNF-alpha-induced cell death.Fil: Franco, Diana Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Nojek Barbieri, Ignacio Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Molinero, Luciana Lorena. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Coso, Omar Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Costas, Monica Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentin
    corecore