31 research outputs found

    Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA).

    Get PDF
    International audienceBACKGROUND: The major role of the neuraminidase (NA) protein of influenza A virus is related to its sialidase activity, which disrupts the interaction between the envelope hemagglutinin (HA) protein and the sialic acid receptors expressed at the surface of infected cells. This enzymatic activity is known to promote the release and spread of progeny viral particles following their production by infected cells, but a potential role of NA in earlier steps of the viral life cycle has never been clearly demonstrated. In this study we have examined the impact of NA expression on influenza HA-mediated viral membrane fusion and virion infectivity. METHODOLOGY/PRINCIPAL FINDINGS: The role of NA in the early stages of influenza virus replication was examined using a cell-cell fusion assay that mimics HA-mediated membrane fusion, and a virion infectivity assay using HIV-based pseudoparticles expressing influenza HA and/or NA proteins. In the cell-cell fusion assay, which bypasses the endocytocytosis step that is characteristic of influenza virus entry, we found that in proper HA maturation conditions, NA clearly enhanced fusion in a dose-dependent manner. Similarly, expression of NA at the surface of pseudoparticles significantly enhanced virion infectivity. Further experiments using exogenous soluble NA revealed that the most likely mechanism for enhancement of fusion and infectivity by NA was related to desialylation of virion-expressed HA. CONCLUSION/SIGNIFICANCE: The NA protein of influenza A virus is not only required for virion release and spread but also plays a critical role in virion infectivity and HA-mediated membrane fusion

    Importance de l'environnement cellulaire pour la réplication du virus de l'immunodéficience humaine

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Vomiting symptom of acute gastroenteritis estimated from epidemiological data can help predict river contamination by human pathogenic enteric viruses

    No full text
    International audienceContamination of fresh water bodies by human enteric viruses from wastewater discharge is a well-established phenomenon. Here we propose a model of viral contamination of rivers based on acute gastroenteritis epidemiology and assess how well it can simulate in situ experimental monitoring. Noroviruses, rotaviruses, enteroviruses, adenoviruses and hepatitis A viruses were quantified by molecular methods after water concentration. Water flows were obtained from the Hydro databank and wastewater treatment plant (WWTP) data. Acute gastroenteritis cases based on medical prescriptions were recorded by the French public health agency. We estimated the total number of daily viral acute gastroenteritis cases and modeled virus shedding and fate in WWTPs and rivers. Simulated virus concentrations were compared to the weighted sum of measured concentrations. Seasonal variations in viral acute gastroenteritis were predicted from vomiting occurrence. All viruses except hepatitis A virus were widely detected in wastewaters and river, in concentrations reaching 10+6 genome copies·L-1 for adenoviruses in the Artiere River. We were able to predict virus load in raw wastewater and in the Artiere River. Estimated weighting coefficients showed the high impact of noroviruses GII. This model can thus serve to compare water treatment, discharge and reuse scenarios.Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved

    Effect of disinfection agents and quantification of potentially viable Leptospira in fresh water samples using a highly sensitive integrity-qPCR assay

    No full text
    International audienceLeptospirosis is an emerging worldwide zoonotic disease, but the general biology of the causative agents is still poorly understood. Humans are an occasional host. The main risk factors are water-associated exposure during professional or recreational activities or during outbreaks in endemic areas. Detecting the presence of pathogenic bacteria in aquatic environments and their capacity to resist various inactivation processes are research fields that need to be further developed. In addition, the methods used for detecting and enumerating Leptospira still need to be improved. We aimed to describe a new quantitative polymerase chain reaction coupled to propidium monoazide treatment (PMAqPCR) that targets not only total Leptospira but also discriminates pathogenic from non-pathogenic Leptospira while also addressing PCR inhibitors, a frequently encountered problem when studying environmental water. In a second step, the killing efficiency of Leptospira to different treatments was tested and PMAqPCR compared to culture-based enumeration. This provided information about the effects of temperature, as well as ultraviolet and chlorine disinfection, that are both related to water treatment processes, in particular for the production of drinking water, on the persistence of both saprophytic and pathogenic Leptospira . Finally, PMAqPCR was used for the detection of Leptospira in freshwater samples for a proof-of-concept. In conclusion, our method could be used for routine freshwater monitoring and allows better evaluation of the presence of Leptospira , allowing evaluation of the bacterial dynamics in a designated area or assessment of the efficacy of water disinfection processes

    Human Immunodeficiency Virus Type 1: Resistance to Nucleoside Analogues and Replicative Capacity in Primary Human Macrophages▿

    No full text
    Antiretroviral treatment failure is associated with the emergence of resistant human immunodeficiency virus type 1 (HIV-1) populations which often express altered replicative capacity (RC). The resistance and RC of clinical HIV-1 strains, however, are generally assayed using activated peripheral blood mononuclear cells (PBMC) or tumor cell lines. Because of their high proliferation rate and concurrent high deoxynucleoside triphosphate (dNTP) content, both resistance and RC alterations might be misestimated in these cell systems. We have evaluated the resistance of HIV-1 clones expressing a variety of RT resistance mutations in primary human macrophages using a single cycle system. Our experiments indicate that d4T, ddI, and 3TC are more potent in macrophages than in HeLa-derived P4 tumor cells. Mutant viruses bearing thymidine analogue mutations (TAMs) or the K65R mutation had similar resistance levels in the two cell types. Strikingly, however, the M184V mutant, although fully resistant to 3TC in P4 cells, maintained some susceptibility to 3TC in macrophages from 8 of 11 donors. Using the same system, we found that the impact of resistance mutations on HIV RC was minimal in activated PBMC and in P4 cells. In contrast, mutant viruses exhibited strongly impaired RC relative to the wild type (WT) in macrophages, with the following RC order: WT > two TAMs > four TAMs = M184V > K65R. In undifferentiated monocytes, WT virus replication could be detected in three of six donors, but replication of all mutant viruses remained undetectable. Altogether, our results confirm that nucleoside reverse transcriptase inhibitors (NRTIs) are powerful antiviral agents in differentiated macrophages, reveal that HIV resistance to some NRTIs may be less efficient in these cells, and indicate that resistance-associated loss of RC is more pronounced in macrophages than in high-dNTP content cell systems

    Large scale survey of enteric viruses in river and waste water underlinesthe health status of the local population

    No full text
    International audienceAlthough enteric viruses constitute a major cause of acute waterborne diseases worldwide, environmental dataabout occurrence and viral load of enteric viruses in water are not often available. In this study, enteric viruses(i.e., adenovirus, aichivirus, astrovirus, cosavirus, enterovirus, hepatitis A and E viruses, norovirus of genogroupsI and II, rotavirus A and salivirus) were monitored in the Seine River and the origin of contamination wasuntangled. A total of 275 water sampleswere collected, twice a month for one year, from the river Seine, its tributariesand themajorWWTP effluents in the Paris agglomeration. Allwater samples were negative for hepatitis Aand E viruses. AdV, NVGI, NVGII and RV-A were the most prevalent and abundant populations in all water samples.The viral load and the detection frequency increased significantly between the samples collected the mostupstream and the most downstream of the Paris urban area. The calculated viral fluxes demonstrated clearly themeasurable impact ofWWTP effluents on the viral contamination of the Seine River. The viral load was seasonalfor almost all enteric viruses, in accordance with the gastroenteritis recordings provided by the French medicalauthorities. These results implied the existence of a close relationship between the health status of inhabitantsand the viral contamination of WWTP effluents and consequently surface water contamination. Subsequently,the regular analysis of wastewater could serve as a proxy for the monitoring of the human viruses circulatingin both a population and surface water

    Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020

    No full text
    International audienceIntroduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease (COVID-19). People infected with SARS-CoV-2 may exhibit no or mild non-specific symptoms; thus, they may contribute to silent circulation of the virus among humans. Since SARS-CoV-2 RNA can be detected in stool samples, monitoring SARS-CoV-2 RNA in waste water (WW) has been proposed as a complementary tool to investigate virus circulation in human populations. Aim: To test if the quantification of SARS-CoV-2 genomes in WW correlates with the number of symptomatic or non-symptomatic carriers. Method: We performed a time-course quantitative analysis of SARS-CoV-2 by RT-qPCR in raw WW samples collected from several major WW treatment plants in Greater Paris. The study period was 5 March to 23 April 2020, including the lockdown period in France (from 17 March). Results: We showed that the increase of genome units in raw WW accurately followed the increase of human COVID-19 cases observed at the regional level. Of note, the viral genome could be detected before the epidemic grew massively (around 8 March). Equally importantly, a marked decrease in the quantities of genome units was observed concomitantly with the reduction in the number of new COVID-19 cases, 29 days following the lockdown. Conclusion: This work suggests that a quantitative monitoring of SARS-CoV-2 genomes in WW could generate important additional information for improved monitoring of SARS-CoV-2 circulation at local or regional levels and emphasises the role of WW-based epidemiology
    corecore