11 research outputs found

    MiR-27a-5p Increases Steer Fat Deposition Partly by Targeting Calcium-sensing Receptor (CASR)

    No full text
    Abstract Castration increases fat deposition, improving beef quality in cattle. Here, the steer group exhibited a significantly higher intramuscular fat (IMF) content than the bull group. To determine the potential roles of microRNAs (miRNAs) in castration-induced fat deposition, differential expression patterns of miRNA in liver tissue were investigated in bulls and steers. A total of 7,827,294 clean reads were obtained from the bull liver library, and 8,312,483 were obtained from the steer liver library; 452 conserved bovine miRNAs and 20 novel miRNAs were identified. The results showed that the expression profiles of miRNA in liver tissue were changed by castration, and 12 miRNAs that were differentially expressed between bulls and steers were identified. Their target genes were majorly involved in the metabolic, PI3K-Akt, and MAPK signaling pathways. Furthermore, six differentially expressed miRNAs were validated by quantitative real-time PCR, and luciferase reporter assays verified that calcium-sensing receptor (CASR) was the direct target of miR-27a-5p. Meantime, we found that the expression level of CASR was significantly higher in steers than in bulls, and revealed that CASR gene silencing in bovine hepatocytes significantly inhibited triacylglycerol (TAG) accumulation and reduced secretion of very low density lipoprotein (VLDL). These results obtained in the liver indicate that miR-27a-5p may increase fat deposition partly by targeting CASR in steers

    Existence and uniqueness of solution for a class of non-Newtonian fluids with non-Newtonian potential and damping

    Get PDF
    This paper discusses the existence and uniqueness of local strong solution for a class of 1D non-Newtonian fluids with non-Newtonian potential and damping term. Here we allow the initial vacuum and viscosity term to be fully nonlinear

    FSA-FPN reconstruction method that fused self-attention mechanism based on YOLOX

    No full text
    Abstract: With the increasing resolution of the input image of the current target detection task,the feature information extracted from the feature extraction network will become more and more limited under the condition that the receptive field of the feature extraction network remains unchanged,and the information coincidence degree between adjacent feature points will also become higher and higher.This paper proposes an FSA(fusion self-attention)-FPN,and designs SAU(self-attention upsample) module.The internal structure of SAU performs cross calculation with self-attention mechanism and CNN to further Feature fusion,and reconstructs FCU(feature coupling unit) to eliminate feature dislocation between them and bridge semantic gap. In this paper,a comparative experiment is carried out on Pascal VOC2007 data set using YOLOX-Darknet 53 as the main dry network. The experimental results show that compared with the FPN of the original network,the average accuracy of MAP@ [.5:.95] after replacing FSA-FPN is improved by 1.5%,and the position of the prediction box is also more accurate.It has better application value in detection scenarios requiring higher accuracy

    Cooperative and Independent Functions of the miR-23a~27a~24-2 Cluster in Bovine Adipocyte Adipogenesis

    No full text
    The miR-23a~27a~24-2 cluster is an important regulator in cell metabolism. However, the cooperative and independent functions of this cluster in bovine adipocyte adipogenesis have not been elucidated. In this study, we found that expression of the miR-23a~27a~24-2 cluster was induced during adipogenesis and this cluster acted as a negative regulator of adipogenesis. miR-27a and miR-24-2 were shown to inhibit adipogenesis by directly targeting glycerol-3-phosphate acyltransferase, mitochondrial (GPAM) and diacylglycerol O-acyltransferase 2 (DGAT2), both of which promoted adipogenesis. Meanwhile, miR-23a and miR-24-2 were shown to target decorin (DCN), glucose-6-phosphate dehydrogenase (G6PD), and lipoprotein lipase (LPL), all of which repressed adipogenesis in this study. Thus, the miR-23a~27a~24-2 cluster exhibits a non-canonical regulatory role in bovine adipocyte adipogenesis. To determine how the miR-23a~27a~24-2 cluster inhibits adipogenesis while targeting anti-adipogenic genes, we identified another target gene, fibroblast growth factor 11 (FGF11), a positive regulator of adipogenesis, that was commonly targeted by the entire miR-23a~27a~24-2 cluster. Our findings suggest that the miR-23a~27a~24-2 cluster fine-tunes the regulation of adipogenesis by targeting two types of genes with pro- or anti-adipogenic effects. This balanced regulatory role of miR-23a~27a~24-2 cluster finally repressed adipogenesis

    Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver.

    No full text
    Castration is an important means of improving the beef quality via increasing fat deposition. However, little is known about the molecular mechanism underlying the fat deposition after castration. Here, the intramuscular fat (IMF) content of the steer group was shown to be much higher than the bull group. To understand transcriptional changes in the genes involved in fat deposition following castration, differential expression patterns of mRNAs in liver tissue were investigated in steers and bulls using RNA sequencing. In total, we obtained 58,282,367-54,918,002 uniquely mapped reads, which covered 90.13% of the currently annotated transcripts; 5,864 novel transcripts and optimized 9,088 known genes were determined. These results indicated that castration could change the expression patterns of mRNAs in liver tissue, and 282 differentially expressed genes (DEGs) were detected between steers and bulls. KEGG pathway analysis showed that the DEGs were mostly enriched in PPAR signaling pathway, steroid biosynthesis, steroid hormone biosynthesis, and biosynthesis of fatty acids. Furthermore, eight DEGs were corroborated via quantitative real-time PCR and we found that FABP1 gene knockdown in bovine hepatocytes prominently reduced intracellular triacylglycerol (TAG) synthesis and very low density lipoprotein (VLDL) secretion in culture medium. In summary, these results indicate that FABP1 may promote fat deposition by promoting the production and secretion of TAG and VLDL in steer liver

    Identification of Potential Key Genes Associated with Adipogenesis through Integrated Analysis of Five Mouse Transcriptome Datasets

    No full text
    Adipose tissue is the most important energy metabolism and secretion organ, and these functions are conferred during the adipogenesis process. However, the cause and the molecular events underlying adipogenesis are still unclear. In this study, we performed integrated bioinformatics analyses to identify vital genes involved in adipogenesis and reveal potential molecular mechanisms. Five mouse high-throughput expression profile datasets were downloaded from the Gene Expression Omnibus (GEO) database; these datasets contained 24 samples of 3T3-L1 cells during adipogenesis, including 12 undifferentiated samples and 12 differentiated samples. The five datasets were reanalyzed and integrated to select differentially expressed genes (DEGs) during adipogenesis via the robust rank aggregation (RRA) method. Functional annotation of these DEGs and mining of key genes were then performed. We also verified the expression levels of some potential key genes during adipogenesis. A total of 386 consistent DEGs were identified, with 230 upregulated genes and 156 downregulated genes. Gene Ontology (GO) analysis showed that the biological functions of the DEGs primarily included fat cell differentiation, lipid metabolic processes, and cell adhesion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these DEGs were mainly associated with metabolic pathways, the peroxisome proliferator-activated receptor (PPAR) signaling pathway, regulation of lipolysis in adipocytes, the tumor necrosis factor (TNF) signaling pathway, and the FoxO signaling pathway. The 30 most closely related genes among the DEGs were identified from the protein⁻protein interaction (PPI) network and verified by real-time quantification during 3T3-L1 preadipocyte differentiation. In conclusion, we obtained a list of consistent DEGs during adipogenesis through integrated analysis, which may offer potential targets for the regulation of adipogenesis and treatment of adipose dysfunction

    Expression profiles and polymorphism analysis of CDIPT gene on Qinchuan cattle

    Get PDF
    Background: CDIPT (CDP-diacylglycerol–inositol 3-phosphatidyltransferase, EC 2.7.8.11) was found on the cytoplasmic side of the Golgi apparatus and the endoplasmic reticulum. It was an integral membrane protein performing the last step in the de novo biosynthesis of phosphatidylinositol (PtdIns). In recent years, PtdIns has been considered to play an essential role in energy metabolism, fatty acid metabolic pathway and intracellular signal transduction in eukaryotic cells. Results: In this study, the results of real-time polymerase chain reaction (PCR) showed that the expression of CDIPT gene was remarkably different in diverse tissues. We also detected the polymorphism of bovine CDIPT gene and analyzed its association with body measurement and meat quality traits of Qinchuan cattle. Blood samples were obtained from 638 Qinchuan cattle aged from 18 to 24 months. DNA sequencing and PCR-restriction fragment length polymorphism (RFLP) were used to find CDIPT gene single nucleotide polymorphism (SNP). Three SNPs g.244T>C (NCBI: rs42069760), g.1496G>A and g.1514G>A were found in this study. g.244T>C located at 5′untranslated region (5′UTR) of exon 1 showed three genotypes: TT, TC and CC. g.1496G>A and g.1514G>A detected the first time were located in intron 3 and showed the same genotypes: GG, GA and AA. Conclusions: Analysis results showed that these three SNPs were significantly associated with body measurement traits (BMTs) and meat quality traits (MQTs). We suggested that CDIPT gene may have potential effects on BMTs and MQTs and can be used for marker-assisted selection
    corecore