175 research outputs found

    Risk factors for the progression from gestational hypertension to preeclampsia

    Get PDF
    Mémoire numérisé par la Direction des bibliothÚques de l'Université de Montréal

    AN EMPIRICAL INVESTIGATION INTO THE EFFECT OF TECHNOSTRESS OF PHYSICIANS ON ADOPTION OF ELECTRONIC HEALTHCARE SYSTEMS

    Get PDF
    Information technology systems in healthcare have existed for several years and gained relatively widespread usage. Therefore, factors of IT adoption have largely been discussed in literatures in order to improve the efficiency and effectiveness of using systems. However, existing frameworks are failing to include an important aspect, the technostress undertaken by physicians. Our research idea is that IT adoption in a clinical environment depends on five different dimensions of technostress (e.g. work overload, techno-invasion and etc. al) of physicians through PU and PEOU based on TAM model. This paper first made comprehensive literature review to the content about technostress and different theories related to adoption, then put forward five hypotheses based on the TAM Model, which has been widely perceived by scholars. As for the model construction and data collection, the research intends to use a 5-point Likert scale and select physicians at different levels from 7 representative hospitals’ basic units located in Shaanxi province. Based on all above, we expect the research could offer a subtle theoretical understanding about the nature of technostress and their impact on adoption by physicians. On the practical front, the research has implications for managers intending to design managerial procedures or rules for the purpose of improving the adoption

    Properties of localization in silicon-based lattice periodicity breaking photonic crystal waveguides

    Get PDF
    The light localization effects in silicon photonic crystal cavities at different disorder degrees have been studied using the finite difference time domain (FDTD) method in this paper. Numerical results showed that localization occurs and enhancement can be gained in the region of the cavity under certain conditions. The stabilities of the localization effects due to the structural perturbations have been investigated too. Detailed studies showed that when the degree of structural disorder is small(about 10%), the localization effects are stable, the maximum enhancement factor can reach 16.5 for incident wavelength of 785 nm and 23 for 850 nm in the cavity, with the degree of disorder about 8%. The equivalent diameter of the localized spot is almost constant at different disorder degrees, approximating to {\lambda \mathord{/ {\vphantom {\lambda 7}} \kern-\nulldelimiterspace} 7}λ/7, which turned out to be independent on the structural perturbation

    DeepMatch: Toward Lightweight in Point Cloud Registration

    Get PDF
    From source to target, point cloud registration solves for a rigid body transformation that aligns the two point clouds. IterativeClosest Point (ICP) and other traditional algorithms require a long registration time and are prone to fall into local optima. Learning-based algorithms such as Deep ClosestPoint (DCP) perform better than those traditional algorithms and escape from local optimality. However, they are still not perfectly robust and rely on the complex model design due to the extracted local features are susceptible to noise. In this study, we propose a lightweight point cloud registration algorithm, DeepMatch. DeepMatch extracts a point feature for each point, which is a spatial structure composed of each point itself, the center point of the point cloud, and the farthest point of each point. Because of the superiority of this per-point feature, the computing resources and time required by DeepMatch to complete the training are less than one-tenth of other learning-based algorithms with similar performance. In addition, experiments show that our algorithm achieves state-of-the-art (SOTA) performance on both clean, with Gaussian noise and unseen category datasets. Among them, on the unseen categories, compared to the previous best learning-based point cloud registration algorithms, the registration error of DeepMatch is reduced by two orders of magnitude, achieving the same performance as on the categories seen in training, which proves DeepMatch is generalizable in point cloud registration tasks. Finally, only our DeepMatch completes 100% recall on all three test sets

    Study ofof weld morphology on thin Hastelloy C-276 sheet of Study weld morphology on thin Hastelloy C-276 sheet of pulsed laser welding pulsed laser welding

    Get PDF
    AbstractIn this paper, it was indicated that the laser welding was well suitable to joining of thin Hastelloy C-276 sheet (0.5 mm thickness), and also the fine grain were observed in welding zone with invisible HAZ (heat affected zone). In addition, the smooth weld joint could be controlled by means of the laser parameter adjustment. On the other hand, it’s proposed that Ni–Cr–Co–Mo and austenite CFe15.1 cubic face-centered crystal structure should be existed in as-received and welding samples, as well as the cause of FWHM (Full Width at Half Maximum) widened and peak offset of joined samples were analyzed

    Variational Quantum Metrology with Loschmidt Echo

    Full text link
    By utilizing quantum mechanical effects, such as superposition and entanglement, quantum metrology promises higher precision than the classical strategies. It is, however, practically challenging to realize the quantum advantages. This is mainly due to the difficulties in engineering non-classical probe state and performing nontrivial measurement in practise, particularly with a large number of particles. Here we propose a scalable scheme with a symmetrical variational quantum circuit which, same as the Loschmidt echo, consists of a forward and a backward evolution. We show that in this scheme the quantum Fisher information, which quantifies the precision limit, can be efficiently obtained from a measurement signal of the Loschmidt echo. We experimentally implement the scheme on an ensemble of 10-spin quantum processor and successfully achieves a precision near the theoretical limit which outperforms the standard quantum limit with 12.4 dB. The scheme can be efficiently implemented on various noisy intermediate-scale quantum devices which provides a promising routine to demonstrate quantum advantages

    Comparisons of three polyethyleneimine-derived nanoparticles as a gene therapy delivery system for renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyethyleneimine (PEI), which can interact with negatively charged DNA through electrostatic interaction to form nanocomplexes, has been widely attempted to use as a gene delivery system. However, PEI has some defects that are not fit for keeping on gene expression. Therefore, some modifications against PEI properties have been done to improve their application value in gene delivery. In this study, three modified PEI derivatives, including poly(Δ-caprolactone)-pluronic-poly(Δ-caprolactone) grafted PEI (PCFC-g-PEI), folic acid-PCFC-isophorone diidocyanate-PEI (FA-PEAs) and heparin-PEI (HPEI), were evaluated in terms of their cytotoxicity and transfection efficiency <it>in vitro </it>and <it>in vivo </it>in order to ascertain their potential application in gene therapy.</p> <p>Methods</p> <p>MTT assay and a marker GFP gene, encoding green fluorescent protein, were used to evaluate cell toxicity and transfection activity of the three modified PEI <it>in vitro</it>. Renal cell carcinoma (RCC) models were established in BALB/c nude mice inoculated with OS-RC-2 cells to detect the gene therapy effects using the three PEI-derived nanoparticles as gene delivery vehicles. The expression status of a target gene Von Hippel-Lindau (VHL) in treated tumor tissues was analyzed by semiquantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>Each of three modified PEI-derived biomaterials had an increased transfection efficiency and a lower cytotoxicity compared with its precursor PEI with 25-kD or 2-kD molecule weight <it>in vitro</it>. And the mean tumor volume was obviously decreased 30% by using FA-PEAs to transfer VHL plasmids to treat mice RCC models. The VHL gene expression was greatly improved in the VHL-treated group. While there was no obvious tumor inhibition treated by PCFC-g-PEI:VHL and HPEI:VHL complexes.</p> <p>Conclusions</p> <p>The three modified PEI-derived biomaterials, including PCFC-g-PEI, FA-PEAs and HPEI, had an increased transfection efficiency <it>in vitro </it>and obviously lower toxicities compared with their precursor PEI molecules. The FA-PEAs probably provide a potential gene delivery system to treat RCC even other cancers in future.</p
    • 

    corecore