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From source to target, point cloud registration solves for a rigid body transformation that

aligns the two point clouds. IterativeClosest Point (ICP) and other traditional algorithms

require a long registration time and are prone to fall into local optima. Learning-based

algorithms such as Deep ClosestPoint (DCP) perform better than those traditional

algorithms and escape from local optimality. However, they are still not perfectly robust

and rely on the complex model design due to the extracted local features are susceptible

to noise. In this study, we propose a lightweight point cloud registration algorithm,

DeepMatch. DeepMatch extracts a point feature for each point, which is a spatial

structure composed of each point itself, the center point of the point cloud, and the

farthest point of each point. Because of the superiority of this per-point feature, the

computing resources and time required by DeepMatch to complete the training are less

than one-tenth of other learning-based algorithms with similar performance. In addition,

experiments show that our algorithm achieves state-of-the-art (SOTA) performance

on both clean, with Gaussian noise and unseen category datasets. Among them, on

the unseen categories, compared to the previous best learning-based point cloud

registration algorithms, the registration error of DeepMatch is reduced by two orders

of magnitude, achieving the same performance as on the categories seen in training,

which proves DeepMatch is generalizable in point cloud registration tasks. Finally, only

our DeepMatch completes 100% recall on all three test sets.

Keywords: 3D vision, point cloud registration, algorithms, datasets, transformation

INTRODUCTION

With the development of modern hardware, such as depth cameras and lidar, many tasks have been
extended to three-dimensional point clouds. Important fields, such as robotics (Deschaud, 2018;
Han et al., 2019), autonomous driving (Wan et al., 2018; Lu et al., 2019; Li et al., 2020a), andmedical
imaging (Yoo et al., 2020), all rely on point cloud registration. The goal of point cloud registration
is to calculate the homogeneous transformation matrix, namely, rotation matrix R and translation
vector t, according to the original point cloud and the target point cloud, so that the original point
cloud can be as close to the target point cloud as possible after transformation.

In this study, the global optimal alignment can be solved by singular value decomposition
(SVD) given the exact point correspondence. In addition, it becomes easier to calculate matches
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if the global alignment information was known.Many algorithms
iterate between them because these two steps depend on each
other. However, the resulting iterative optimization algorithm
tends to be locally optimal. As the most classical point cloud
registration algorithm, the iterative closest point (ICP) algorithm
(Besl and McKay, 1992) often stagnates at suboptimal local
minima because of the non-convexity of the problem. A series of
improved methods (Rusinkiewicz and Levoy, 2001; Fitzgibbon,
2003), such as GO-ICP (Yang et al., 2015), have tried to alleviate
this problem based on branch-and-bound (BnB), but still do
not always provide acceptable output (Wang and Solomon,
2019a; Choy et al., 2020), and these algorithms are computed
slower than ICP because of the time-consuming BnB (Aoki
et al., 2019; Wang and Solomon, 2019a; Fu et al., 2021). Deep
Closest Point (DCP) (Wang and Solomon, 2019a), an improved
algorithm of ICP, makes pioneering use of the neural network
to extract per-point features and calculates the point-to-point
correspondence through the similarity of the per-point feature
of two-point clouds. DCP and its improved algorithms (Fu
et al., 2021) are still not perfectly robust and rely on complex
model design because the extracted local features are susceptible
to noise.

In this study, we reviewed the limitations of the DCP
and its improved algorithm and proposed the DeepMatch
algorithm, which extracts a new per-point feature for the point
cloud. As proved by experiments, point cloud registration
can be completed more efficiently and accurately on this
per-point feature. Our model simply consists of three parts,
as follows: (1) Point Structure Extractor to extract a per-
point structure, (2) the convolution part of the bonnet,
which is a very simple 4-layered convolution, and (3) the
differentiable singular value decomposition part, predicting
rigid body transformation. This means that we omit the
redundant pointer part of DCP, which occupies the most
computing resources and does not help much to improve the
effect, and DeepMatch does not need to use more complex
feature extractors like other algorithms. We also train and
test on ModelNet40, and the accuracy of registration exceeds
DCP and its improved algorithm, leading to the point cloud
registration algorithm. At the same time, the computing
resources and training time we need are much less than existing
registration algorithms.

Our main contributions to this study include the following
two aspects. First, we propose to use DeepMatch to extract
a per-point feature from a new per-point structure. Based
on this feature, our DeepMatch achieves state-of-the-art
(SOTA) performance on clean, noisy, and unseen categories
datasets with at most one-tenth of the computing resources
(GPU memory) and computing time of other similarly
performing learning-based algorithms. The robustness of
DeepMatch is also excellent, with a recall rate of 100% in
all three datasets. Second, we proved that learning-based
registration depends on the point cloud size. By scaling
the point cloud before registration, compared with the best
learning-based method before, the accuracy of our DeepMatch
on the unseen point cloud was improved by two orders
of magnitude.

RELATED WORKS

Traditional Ways of Point Cloud
Registration
One of the most important ways of traditional the point
cloud registration algorithm is to obtain the final rigid body
transformation using an iterative method, among which the most
classic is the ICP algorithm. The ICP algorithm has very high
registration accuracy when it can complete the registration, but
ICP is a non-convex problem, so it is very easy to fall into the
local optimal solution when the source point cloud and the target
point cloud are in a bad initial position. The improved normal
iterative closest point (NICP) algorithm (Jia et al., 2016) improves
the registration speed and accuracy by eliminating the wrong
corresponding points through the local features of the points,
and the point-to-line ICP algorithm(Censi, 2008) and point-to-
plane ICP algorithm (Low, 2004) change the correspondence
between points and points to the correspondence between points
and lines, and points and planes, respectively, but they still have
not solved the problem of poor ICP robustness. The Go-ICP,
GOGMA (Campbell and Petersson, 2016), and other algorithms
(Yang et al., 2015; Campbell et al., 2019) alleviate this problem
with the global optimization algorithm based on BnB, but these
algorithms cannot guarantee the completion of registration, and
another defect is their slow computing speed.

PFH (Rusu et al., 2008) and its improved algorithm FPFH
(Rusu et al., 2009), extract the features of the key points in the
point cloud through calculation and build feature descriptors
for them, and these feature descriptors are matched to build
the potential correspondence. After that, PFH and FPFH used
the RANSAC algorithm to complete the final registration.
Although these two algorithms based on feature descriptors have
good robustness, it is time-consuming to calculate the feature
descriptors, and the accuracy of these algorithms is not high.

The fast global registration (FGR) algorithm (Zhou
et al., 2016) achieves state-of-the-art performance through
hierarchical non-convex strategy convex optimization
based on the corresponding objective function and based
on the corresponding point cloud registration. However,
the correspondence-based approach is sensitive to point
clouds of repetitive structures because a large proportion
of the potential correspondences in these scenarios
are incorrect.

Learning-Based Registration
One of the earliest algorithms to use deep learning to complete
point cloud registration is 3DMatch (Zeng et al., 2017), which,
like FPFH, builds 3D local feature descriptors by extracting
key points. 3DMatch uses the volumetric grid of truncated
distance function to represent the original point cloud in a
structured way and uses twin neural networks for training.
3DMatch and its improved algorithms (Gojcic et al., 2019) are
not end-to-end, and the calculation of performance better than
3D local feature descriptors is limited, which requires a long
registration time.

PointNetLK (Aoki et al., 2019) is the first learning-
based end-to-end point cloud registration algorithm that
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calculates global feature descriptors for two-point clouds
through PointNet (Qi et al., 2017) and minimizes the distance
between global descriptors using an iterative approach similar
to the Lucas-Kanade algorithm (Lucas and Kanade, 1981;
Baker and Matthews, 2004). PCRNet (Sarode et al., 2019)
replaces the Lucas-Kanade algorithm in PointNetLK with
a deep neural network. But they can still fall into the
local optimal solution, and they do not take advantage of
local features.

Deep ClosestPoint proposed to use the deep learning method
to obtain a per-point feature to improve ICP. In DCP, the
structure composed of each point and its nearest k points is the
feature to be extracted, that is, they use DGCNN (Wang et al.,
2019) to extract the edge graph composed of each point and
its neighborhood. Based on DCP, PRNet (Wang and Solomon,
2019b) proposes a key-point detector and uses the key-point
to key-point relationship to solve the partial-to-partial-point
cloud registration in a self-supervised way. RGM (Fu et al.,
2021) proposed depth map matching, which used the features
of other nodes and the structure information of graphs to
establish the corresponding relationship, and introduced the
AIS module to establish the reliable corresponding relationship
between the nodes of two given graphs. Since the nearest point
is easily affected by noise, the feature they used is only proved
to be very effective in point cloud registration without noise
or with a small amount of noise, which means that the source
point cloud and the target point cloud need to have the point
structure extremely high similarity, even to be the same on some
objects, and because of its sparseness, point clouds may represent
the same object with completely different point structures. In
addition, the feature extraction of this edge graph depends on
the feature extraction capability of the complex network model
structure. CorsNet (Yuan et al., 2020) concatenates the local
features with the global features and regresses correspondences
between point clouds, and more useful information is integrated
than the conventional approaches. Algorithms such as DeepGMR
(Li et al., 2020b) and IDAM (Wu et al., 2015) have
proposed some new methods to solve the problems of
DCP and PointNetLK, but the accuracy of these algorithms
is insufficient.

PROBLEM STATEMENT

In this section, we will formulate the 3D point cloud registration
problem and our DeepMatch to facilitate your understanding of
the study.

Given the source point cloud P = {pi ǫ R3|i = 1, 2, ..., M} and
the target point cloud Q= {qj ǫ R

3|j= 1, 2, ..., N}, from source to
target, the task of point cloud registration is to solve a rigid body
transformation {R, t}, which makes P coincide with Q as much as
possible. R ǫ SO(3) is a rotation matrix, and t ǫ R3 is a translation
vector. It is not required that the source point cloud and the target
point cloud have the same number of points, that is to say, Mmay
not be equal to N.

For any point pi in the source point cloud, assuming that
the point qi in the target point cloud is the corresponding point

of pi, the goal of the registration algorithm is to obtain the
corresponding pose by minimizing the distance between the
corresponding point pairs:

E (R, t) = argmin
RǫSO(3),tǫR3

∑n

i=1
wi

∥

∥(Rpi + t)− qi
∥

∥ (1)

where wi represents the weight of each pair of corresponding
points. Here, we assume that the point-to-point mapping
relationship is known and expressed by the function m, that
is, qi = m(pi), and the objective function E(R, t) should be
modified to:

E (R, t) = argmin
RǫSO(3),tǫR3

∑n

i=1
wi

∥

∥(Rpi + t)−m(pi)
∥

∥ (2)

The solutions of Equation (2) depend on the solution of the
mapping function m. In DeepMatch, we used deep learning to
estimate the mapping function m, that is, suppose FP and FQ
are the feature embeddings we extracted, the mapping function
m can be calculated according to the similarity of FP and FQ
as follows:

m
(

pi
)

=
∑N

j=1
σijqj (3)

σ = softmax(FPF
T
Q) (4)

The mapped m(pi) may not be a real point in the point cloud
Q, but the point cloud composed of all m(pi) approximately
expresses the point cloud Q.

From the above problem statement, we can know that
the accuracy of the mapping function m depends on the
accuracy of the feature embedding. We will introduce how
DeepMatch calculates a more accurate m based on features in the
next part.

METHODS

In this section, we will introduce our model as shown in
Figure 2 and describe the driving forces for the improvements
made, which explains the simplicity and effectiveness of
our model.

Per-Point Feature
After establishing the above problem statement, it can be easily
concluded that the key task is to obtain more accurate point
features in the problem of point cloud registration using the deep
learning one-shot process.

The edge graph formed by the nearest point is proposed
because the coordinates of a single point in the point cloud are
obviously meaningless. However, compared with the information
of the nearest point, for each point in the point cloud,
the position relative to the central point is more effective,
as proved by the experiment, which is why we decided to
consider the coordinates of the central point when obtaining the
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features of each point. Our specific approach is to decentralize
each point.

p =

∑n
i=1 wipi

∑n
i=1 wi

, q =

∑n
j=1 wjpj

∑n
j=1 wj

(5)

pi = pi − p, qi = qi − q, i = 1, 2, . . . , n (6)

FIGURE 1 | For any point P, DeepMatch extracts a structure composed of

point P itself, central point C, and the farthest point F of point P.

In this way, the central point of the point cloud is implied
in the coordinate origin O. With just decentralization, we still
cannot completely distinguish each point. The feature using
the nearest point is very weak in robustness because it is very
susceptible to noise. Specifically, the offset distance generated
by noise is very large relative to the distance of the nearest
point pair. Therefore, we naturally consider the furthest point
because the distance offset generated by the noise is almost
negligible relative to the furthest point pair. Thus, for any point
pi, the structural feature of piOfi is formed, where fi is the
farthest point of pi. As shown in Figure 1, our experiments
prove the accuracy and robustness of this feature in point cloud
registration.

DeepMatch Network Architecture
Usually, we used a very complex network structure to complete
feature embedding in deep learning; however, our driving
force is to improve the effectiveness of features and reduce
the complexity of the model, so we tried to use the simplest
backbone network possible. After experimental comparison, a
four-layered convolutional neural network as shown in Figure 2

can achieve the best performance, the numbers of filters in each
layer are (64; 256; 128). Our DeepMatch does not need various
models such as transformers that other algorithms rely on to
improve feature extraction capabilities. As stated in the problem
statement, after obtaining the per-point feature and calculating
the corresponding points of two-point clouds through feature
similarity, the Singular Value.

The decomposition method should be used to solve the
final rigid transformation. In order to make the singular value

FIGURE 2 | The pipeline of our DeepMatch (A) simply consists of Point Structure Extractor, Local Feature Extractor, and a differentiable SVD part, (B,C) respectively,

show the details of Point Structure Extractor and Local Feature Extractor.
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decomposition process differentiable and thus backpropagated,
the covariance matrix of the singular value decomposition is
defined as follows:

S = P(σQ)T (7)

where σ is defined in Equation (4). The covariance matrix is
decomposed into:

S = UΣVT (8)

Then the rotation matrix R and the translation vector t can be
calculated as follows:

R = VUT , t = q− Rp (9)

This SVD process is a one-shot process in the deep
learning method.

Scaling Method
We used the following simple mean square error loss:

L =

∥

∥

∥
RTRg − I‖ +

∥

∥t − tg
∥

∥ + λ ‖ θ‖ 2 (10)

where R and t are the rotation matrix and translation vector
obtained by solving, and Rg and tg are the corresponding ground
truth. The third term is a regular term, which is used to reduce
the complexity of the network. This simple loss is very effective
because it is close to the target of the output end.

Loss Function
On the types of objects that have not been seen, the existing
point cloud registration algorithms cannot achieve extremely
high accuracy. In the case of the recent RGM, the average error
of the rotation matrix is reduced to 1.5457◦, but this is obviously
not what we want as the result.

After analyzing the reasons for this situation, we conclude
as follows. In addition to the poor robustness of relying on the
nearest point, the current backbone network mainly extracts
distance information for point features, while the size of any two
point clouds is obviously different. However, since deep learning
can only process quantitative point input, the distance between a
point and its closest point in different point clouds may differ by
several orders of magnitude.

Therefore, our DeepMatch scales the point cloud before input
to the backbone network, so that the size of each input point
cloud is about the same. This trick has been proven to solve
the problem.

EXPERIMENTS

Per-Point Feature Dataset
Our experiment is based on the ModelNet40 (Choy et al., 2020)
dataset, a public dataset containing 12,311 Meshed CAD Models
with 40 types of objects. We randomly sampled 1,024 points on
the surface of these CAD models as the source point clouds,
just as in the experiments of the algorithms such as PointNet

and DCP. The rigid transformation [Rg , tg] is also generated
randomly for each point cloud to obtain the target point clouds,
where Rg and tg are the ground truth of the experimental
rotation matrix and translation vector. Similar to DCP and other
algorithms, the rotation angle and translation distance of all
target point clouds relative to the corresponding source point
clouds on each coordinate axis are within the range of [0, 45m]
and [−0.5, 0.5m], respectively.

Metrics of the Results
In this study, we used three metrics to measure the performance
of each algorithm. The first two are to evaluate the mean
absolute error (MAE) between the estimation of the model and
the groundtruth of R in the rotation axis XYZ and t in the
direction XYZ:

MAE(R) =

∑K
k=1

∥

∥Rk − R
g

k

∥

∥

K
(11)

MAE(t) =

∑K
k=1

∥

∥tk − t
g

k

∥

∥

K
(12)

where K is the number of point cloud pairs in the test and
[R

g

k
, t

g

k
] denote the ground truth transformation of k-th point-

cloud pairs. We abandon the mean isotropic errors (MIE) metric
introduced in RPM-Net and the clip chamfer distance (CCD)
metric introduced in RGM because we believe that these three
metrics can clearly measure the accuracy and robustness of each
registration algorithm and the redundant indicators will only
make the comparison results readable worse. The third metric we
used is the recall rate. A recall is considered successful if MAE(R)
< 1.0◦ and MAE(t) < 0.1m can be achieved. We measure the
number of successful recalls against the total number of tests to
get the recall rate.

We also used three metrics to measure the computing
resource consumption of each algorithm. The first two are the
GPU memory and time required to train these learning-based
algorithms, whichmeasure the complexity of each algorithm, and
this comparison was done on a workstation with two NVIDIA
Quadro P6000 graphics cards. The last is the average time taken
to complete a single registration, and this comparison was made
on an M1 MacBook pro.

In the traditional point cloud registration algorithm, we
selected the most classic ICP algorithm and the better FGR
algorithm to compare with us, and the implementation of ICP
and FGR is based on the open3d library, and ICP uses an
identity matrix as initialization. In addition, we selected four
learning-based registration algorithms, namely, RPMNet, IDAM,
DeepGMR, and RGM, where RGM represents the latest and
most effective registration algorithm before. The latest algorithms
have proven that they are superior to earlier learning-based
registration algorithms such as DCP and PointNetLK, so these
algorithms are not compared in this study. We retrained and
tested all learning-based algorithms according to the parameters
given in their studies. Since our performance test results are
basically the same as those in RGM, we decided to use the
performance data given in RGM. All comparison results are
displayed in tables, and the best results are marked in bold font.
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Clean Point Cloud
In comparison to clean point clouds, 40 categories of 12,311
point clouds are divided into the training set and test set, among
which the training set contains 9,843 point clouds and the
corresponding test set has 2,468 point clouds. Both the training
set and the test set cover all 40 categories.

We trained and tested all of the models mentioned in
the previous section, and the results are shown in Table 1.
As shown in Figure 3, even though RGM has done a
great job in clean point cloud data, we still beat it in
MAE(R). Only our DeepMatch had a 100% recall rate. The
accuracy of ICP in this test is very poor because its recall
rate is very low, which also verifies its shortcomings in
poor robustness.

Point Cloud With Gaussian Noise
In the experiment on the point cloud with Gaussian noise,
the division of the test set and training set is the same as in
the experiment on the clean point cloud. Gaussian noise is
added to each point on all point clouds along each of its axes,
and this Gaussian noise with a mean of 0 and a variance of
0.01 but the translation in each direction is truncated within
the range of [−0.05, 0.05m]. Obviously, the results of this
experiment can intuitively reflect the robustness of the model,
and the point cloud data in the actual registration environment
are basically with Gaussian noise, so the results of this

TABLE 1 | Performance on clean point clouds.

Method MAE(R) MAE(t) Recall

ICP 6.4467 0.05446 74.19%

FGR 0.0099 0.00010 99.96%

RPM-Net 0.2464 0.00112 98.14%

IDAM 1.3536 0.02605 75.81%

DeepGMR 0.0156 0.00002 100.00%

RGM 0.0096 <0.00001 100.00%

DeepMatch 0.0095 <0.00001 100.00%

experiment are more convincing than the experiment on clean
point clouds.

Our test results (shown in Table 2) show that our DeepMatch
achieves basically the same effect on the point cloud with
Gaussian noise as on the clean point cloud, proving that our
DeepMatch has extremely high robustness. By comparison, our
accuracy is an order of magnitude better than.

Performance in Unseen Categories
The purpose of the test on the unseen categories is to prove the
learning ability of the model for the point cloud registration task.
Because neither ICP nor FGR is a learning-based algorithm, they
are not included in this comparison. In this experiment, different
from the partitioning method of the test set and training set, we
divided the 40 categories into half and half, with the first half for

TABLE 2 | Performance on point clouds with Gaussian noise.

Method MAE(R) MAE(t) Recall

ICP 6.5030 0.04944 77.59%

FGR 10.0079 0.07080 30.75%

RPM-Net

IDAM

0.5773

3.4916

0.00532

0.02915

96.68%

49.59%

DeepGMR

RGM

2.2736

0.1496

0.01498

0.00141

56.52%

99.51%

DeepMatch 0.0098 <0.00001 100.00%

TABLE 3 | The performance of different methods on unseen categories of point

clouds.

Method MAE(R) MAE(t) Recall

RPM-Net 1.9826 0.02276 75.59%

IDAM 19.3249 0.20729 0.95%

DeepGMR

RGM

71.0677

1.5457

0.44632

0.01418

0.24%

84.28%

DeepMatch 0.0107 <0.00001 100.00%

FIGURE 3 | DeepMatch completes the registration under inputs with Gaussian noise.
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FIGURE 4 | DeepMatch completes the registration on unseen categories.

TABLE 4 | The computational resources (GPU memories) and time required for

training.

method GPU Time (train) Time (reg)

ICP – – 0.998s

FGR – – 0.279s

RPM-Net IDAM 68268M 62h 04m 0.528s

8697M 5h 10m 0.275s

DeepGMR RGM 3240M 3h 18m 0.499s

56883M 7h 39m 0.471s

DeepMatch 2998M 34m 0.027s

training and the second half for testing. In addition, the point
clouds here were all clean point clouds without Gaussian noise.

As shown in Table 3, our performance is far superior to
other algorithms on unseen categories, and the accuracy is still
consistent with that of the seen clean point cloud dataset. This
proves our previous analysis of the impact of point cloud size
on registration. The inability to achieve a high recall rate makes
the equalization error of other algorithms very high. We also
tested on some objects not seen in ModelNet40, such as the
Stanford rabbit, as shown in Figure 4, and only our DeepMatch
can achieve highprecision registration.

Compute Resources and Training Time
We counted the computing resources (GPU memory) and time
required by all the test models in the three experiments during
the training, as well as the time required to complete the
registration after training. For a fair comparison, all learning-
based algorithms are trained under the conditions of batch size
= 32 and num points = 1,024. Since ICP and FGR are not
training-based models, they do not participate in the comparison
of computing resources and training time. As shown in Table 4,
our DeepMatch’s demand for computing resources is much
lower than other learning-based models. DeepMatch can achieve
convergence by using fewer epochs, and the training time of
each epoch is also the shortest. In terms of overall training time,

DeepMatch is at least two orders of magnitude lower than other
similarly performing learning-based algorithms, such as RGM.
Because of its simple network structure and one-shot registration
process, DeepMatch also outperforms other algorithms in terms
of registration speed, taking about 0.029 s to complete.

CONCLUSION

For the point cloud registration task, we propose to use
DeepMatch to extract the per-point feature from a brand
new per-point structure. Based on this per-point feature,
DeepMatch achieves state-of-the-art (SOTA) performance on
the ModelNet40 dataset and can complete the training and
registration with less computing resources and time. We also
proved the importance of point cloud size in learning-based
algorithms. Through size scaling, the learnability of the point
cloud in the point cloud registration task can be improved, so that
on unseen categories, our learning-based DeepMatch improves
accuracy by two orders of magnitude over RGM, which was the
previous best. All in all, we provide you with a way to solve the
problem by feature engineering while others are focused on using
more complex models, and we will continue to solve the partial
to partial point cloud registration problem based on the feature
engineering method.
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