3 research outputs found

    Limitations of conventional drinking water technologies in pollutant removal

    Get PDF
    This chapter gives an overview of the more traditional drinking water treatment from ground and surface waters. Water is treated to meet the objectives of drinking water quality and standards. Water treatment and water quality are therefore closely connected. The objectives for water treatment are to prevent acute diseases by exposure to pathogens, to prevent long-term adverse health effects by exposure to chemicals and micropollutants, and finally to create a drinking water that is palatable and is conditioned in such a way that transport from the treatment works to the customer will not lead to quality deterioration. Traditional treatment technologies as described in this chapter are mainly designed to remove macro parameters such as suspended solids, natural organic matter, dissolved iron and manganese, etc. The technologies have however only limited performance for removal of micropollutants. Advancing analytical technologies and increased and changing use of compounds however show strong evidence of new and emerging threats to drinking water quality. Therefore, more advanced treatment technologies are required.</p

    Physicochemical quality and chemical safety of chlorine as a reconditioning agent and wash water disinfectant for fresh-cut lettuce washing

    No full text
    Chlorine was assessed as a reconditioning agent and wash water disinfectant in the fresh-cut produce industry. Artificial fresh-cut lettuce wash water, made from butterhead lettuce, was used for the experiments. In the reconditioning experiments, chlorine was added to artificial wash water inoculated with Escherichia coli O157 (6 log CFU/ml). Regression models were constructed based on the inactivation data and validated in actual wash water from leafy vegetable processing companies. The model that incorporated chlorine dose and chemical oxygen demand (COD) of the wash water accurately predicted inactivation. Listeria monocytogenes was more resistant to chlorine reconditioning in artificial wash water than Salmonella spp. and Escherichia coli O157. During the washing process with inoculated lettuce (4 log CFU/g), in the absence of chlorine, there was a rapid microbial buildup in the water that accumulated to 5.4 +/- 0.4 log CFU/100 ml after 1 h. When maintaining a residual concentration of 1 mg/liter free chlorine, wash water contamination was maintained below 2.7, 2.5, and 2.5 log CFU/100 ml for tap water and artificial process water with COD values of 500 and 1,000 mg O-2/liter, respectively. A model was developed to predict water contamination during the dynamic washing process. Only minor amounts of total trihalomethanes were formed in the water during reconditioning. Total trihalomethanes accumulated to larger amounts in the water during the wash water disinfection experiments and reached 124.5 +/- 13.4 mu g/liter after 1 h of execution of the washing process in water with a COD of 1,000 mg O-2/liter. However, no total trihalomethanes were found on the fresh-cut lettuce after rinsing
    corecore