87 research outputs found

    Nasopharyngeal Colonization and Invasive Disease Are Enhanced by the Cell Wall Hydrolases LytB and LytC of Streptococcus pneumoniae

    Get PDF
    Background: Streptococcus pneumoniae is a common colonizer of the human nasopharynx and one of the major pathogens causing invasive disease worldwide. Dissection of the molecular pathways responsible for colonization, invasion, and evasion of the immune system will provide new targets for antimicrobial or vaccine therapies for this common pathogen. Methodology/Principal Findings: We have constructed mutants lacking the pneumococcal cell wall hydrolases (CWHs) LytB and LytC to investigate the role of these proteins in different phases of the pneumococcal pathogenesis. Our results show that LytB and LytC are involved in the attachment of S. pneumoniae to human nasopharyngeal cells both in vitro and in vivo. The interaction of both proteins with phagocytic cells demonstrated that LytB and LytC act in concert avoiding pneumococcal phagocytosis mediated by neutrophils and alveolar macrophages. Furthermore, C3b deposition was increased on the lytC mutant confirming that LytC is involved in complement evasion. As a result, the lytC mutant showed a reduced ability to successfully cause pneumococcal pneumonia and sepsis. Bacterial mutants lacking both LytB and LytC showed a dramatically impaired attachment to nasopharyngeal cells as well as a marked degree of attenuation in a mouse model of colonization. In addition, C3b deposition and phagocytosis was more efficient for the double lytB lytC mutant and its virulence was greatly impaired in both systemic and pulmonary models of infection. Conclusions/Significance: This study confirms that the CWHs LytB and LytC of S. pneumoniae are essential virulence factor

    Dual Infection and Superinfection Inhibition of Epithelial Skin Cells by Two Alphaherpesviruses Co-Occur in the Natural Host

    Get PDF
    Hosts can be infected with multiple herpesviruses, known as superinfection; however, superinfection of cells is rare due to the phenomenon known as superinfection inhibition. It is believed that dual infection of cells occurs in nature, based on studies examining genetic exchange between homologous alphaherpesviruses in the host, but to date, this has not been directly shown in a natural model. In this report, gallid herpesvirus 2 (GaHV-2), better known as Marek’s disease virus (MDV), was used in its natural host, the chicken, to determine whether two homologous alphaherpesviruses can infect the same cells in vivo. MDV shares close similarities with the human alphaherpesvirus, varicella zoster virus (VZV), with respect to replication in the skin and exit from the host. Recombinant MDVs were generated that express either the enhanced GFP (eGFP) or monomeric RFP (mRFP) fused to the UL47 (VP13/14) herpesvirus tegument protein. These viruses exhibited no alteration in pathogenic potential and expressed abundant UL47-eGFP or -mRFP in feather follicle epithelial cells in vivo. Using laser scanning confocal microscopy, it was evident that these two similar, but distinguishable, viruses were able to replicate within the same cells of their natural host. Evidence of superinfection inhibition was also observed. These results have important implications for two reasons. First, these results show that during natural infection, both dual infection of cells and superinfection inhibition can co-occur at the cellular level. Secondly, vaccination against MDV with homologous alphaherpesvirus like attenuated GaHV-2, or non-oncogenic GaHV-3 or meleagrid herpesvirus (MeHV-1) has driven the virus to greater virulence and these results implicate the potential for genetic exchange between homologous avian alphaherpesviruses that could drive increased virulence. Because the live attenuated varicella vaccine is currently being administered to children, who in turn could be superinfected by wild-type VZV, this could potentiate recombination events of VZV as well

    Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells

    Get PDF
    The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance – Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina

    Polycystic ovary syndrome

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.Robert J Norman, Ruijin Wu and Marcin T Stankiewic

    The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts

    Full text link
    • …
    corecore