10 research outputs found

    Global convergence in the vulnerability of forests to drought

    Get PDF
    Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity(1). One primary cause of productivity loss and plant mortality during drought is hydraulic failure(2-4). Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe(5,6). Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk(7,8)

    Drought survival strategies of tropical trees

    No full text
    Climate change is predicted to increase the occurrence of extreme droughts, which are associated with elevated mortality rates in tropical trees. Drought-induced mortality is thought to occur by two main mechanisms: hydraulic failure or carbon starvation. This chapter focuses on the strategies that plants use to survive these two drought-induced mortality mechanisms and how these mechanisms are distributed among the immense diversity of tropical tree species. The traits that tropical trees may use to survive drought include (1) xylem that is resistant to drought-induced cavitation, (2) high sapwood capacitance that protects xylem from critically low water potentials, (3) drought deciduousness, (4) photosynthetic stems that have the potential to assimilate carbon at greater water-use efficiency than leaves, (5) deep roots, (6) regulation of gas exchange to reduce leaf water loss or to maintain photosynthesis at low leaf water potential and (7) when all else fails, low cuticular conductance from exposed tissues during extended drought. To date, most research has focused on deciduousness, resistant xylem, soil water, gas exchange behavior and sapwood capacitance, whereas little is known about the role of photosynthetic stems or cuticular conductance during extreme extended drought, making these processes a high priority for a complete understanding of tropical tree physiology during drought
    corecore