1,559 research outputs found
Exception handling in distributed workflow systems using mobile agents
2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
Imperial trophy or island relict? A new extinction paradigm for Père David's deer: a Chinese conservation icon
The file attached is the Published/publisher’s pdf version of the article
Relationship between angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and COVID-19 incidence or severe disease
BACKGROUND: Angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) may be associated with higher susceptibility of COVID-19 infection and adverse outcomes. We compared ACEI/ARB use and COVID-19 positivity in a case-control design, and severity in COVID-19 positive patients. METHODS: Consecutive patients who attended Hong Kong's public hospitals or outpatient clinics between 1 January and 28 July 2020 for COVID-19 real time-PCR (RT-PCR) tests were included. Baseline demographics, past comorbidities, laboratory tests and use of different medications were compared between COVID-19 positive and negative patients. Severe endpoints for COVID-19 positive patients were 28-day mortality, need for intensive care admission or intubation. RESULTS: This study included 213 788 patients (COVID-19 positive: n = 2774 patients; negative: n = 211 014). In total, 162 COVID-19 positive patients (5.83%) met the severity outcome. The use of ACEI/ARB was significantly higher amongst cases than controls (n = 156/2774, 5.62 vs. n = 6708/211014, 3.17%; P 1, P 0.05). CONCLUSION: There was a significant relationship between ACEI/ARB use and COVID-19 positivity and severe disease after adjusting for significant confounders
The Shapes of Cooperatively Rearranging Regions in Glass Forming Liquids
The shapes of cooperatively rearranging regions in glassy liquids change from
being compact at low temperatures to fractal or ``stringy'' as the dynamical
crossover temperature from activated to collisional transport is approached
from below. We present a quantitative microscopic treatment of this change of
morphology within the framework of the random first order transition theory of
glasses. We predict a correlation of the ratio of the dynamical crossover
temperature to the laboratory glass transition temperature, and the heat
capacity discontinuity at the glass transition, Delta C_p. The predicted
correlation agrees with experimental results for the 21 materials compiled by
Novikov and Sokolov.Comment: 9 pages, 6 figure
Brown Carbon Aerosol in Urban Xi’an, Northwest China: TheComposition and Light Absorption Properties
Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) was found to correlate strongly with both parent polycyclic aromatic hydrocarbons (parent-PAHs, 27 species) and their carbonyl oxygenated derivatives (carbonyl-OPAHs, 15 species) in all seasons (r(2) > 0.61). These measured parent-PAHs and carbonyl-OPAHs account for on average similar to 1.7% of the overall absorption of methanol-soluble BrC, about 5 times higher than their mass fraction in total organic carbon (OC, similar to 0.35%). The fractional solar absorption by BrC relative to element carbon (EC) in the ultraviolet range (300-400 nm) is significant during winter (42 +/- 18% for water-soluble BrC and 76 +/- 29% for methanol-soluble BrC), which may greatly affect the radiative balance and tropospheric photochemistry and therefore the climate and air quality
Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC
Precision studies of the production of a high-transverse momentum lepton in
association with missing energy at hadron colliders require that electroweak
and QCD higher-order contributions are simultaneously taken into account in
theoretical predictions and data analysis. Here we present a detailed
phenomenological study of the impact of electroweak and strong contributions,
as well as of their combination, to all the observables relevant for the
various facets of the p\smartpap \to {\rm lepton} + X physics programme at
hadron colliders, including luminosity monitoring and Parton Distribution
Functions constraint, precision physics and search for new physics signals.
We provide a theoretical recipe to carefully combine electroweak and strong
corrections, that are mandatory in view of the challenging experimental
accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC,
and discuss the uncertainty inherent the combination. We conclude that the
theoretical accuracy of our calculation can be conservatively estimated to be
about 2% for standard event selections at the Tevatron and the LHC, and about
5% in the very high transverse mass/lepton transverse momentum tails. We
also provide arguments for a more aggressive error estimate (about 1% and 3%,
respectively) and conclude that in order to attain a one per cent accuracy: 1)
exact mixed corrections should be computed in
addition to the already available NNLO QCD contributions and two-loop
electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be
coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE
Cardiac Resynchronization Therapy in Patients with Mild Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
# The Author(s) 2011. This article is published with open access at Springerlink.com Objective This review aims at updating the results of cardiac resynchronization therapy (CRT) in mild heart failure patients, and investigating whether CRT can prevent or reverse heart failure progression in an earlier stage. Methods Randomized controlled trials of CRT in patients with New York Heart Association (NYHA) Class I or II heart failure were identified. The effects of CRT on worsening heart failure hospitalization, all-cause mortality, and overall adverse events were meta-analyzed, and the effects of CRT on left ventricular (LV) were systematically reviewed and meta-analyzed. Results Eight studies were identified with a total of 4,302 patients. CRT was associated with a substantial improvement in LVend-systolic volume (WMD −39, 95%CI −41.56 to −36.45). CRT also had a marked effect in reducing new hospitalizations for worsening heart failure by 31 % (RR 0.69, 95%CI 0.60 to 0.79). In addition, CRTsignificantly decreased all-cause mortality by 21 % (RR 0.79, 95%CI 0.67 to 0.93). However, complications in patients with CRT increased by 74 % (RR 1.74, 95%CI 1.44 to 2.11). Conclusions This meta-analysis suggests that CRT could improve the prognosis in patients with mild heart failure and ventricular dyssynchrony, but these improvements are accompanied by more adverse events. Since most patients in the included trials had received ICD therapy, our analysis suggests that CRT could offer an additional benefit. Key words Heart failure. Cardiac resynchronization therapy. Meta-analysi
The Mutant Form of Lamin A that Causes Hutchinson-Gilford Progeria Is a Biomarker of Cellular Aging in Human Skin
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare disorder characterized by accelerated aging and early death, frequently from stroke or coronary artery disease. 90% of HGPS cases carry the LMNA G608G (GGC>GGT) mutation within exon 11 of LMNA, activating a splice donor site that results in production of a dominant negative form of lamin A protein, denoted progerin. Screening 150 skin biopsies from unaffected individuals (newborn to 97 years) showed that a similar splicing event occurs in vivo at a low level in the skin at all ages. While progerin mRNA remains low, the protein accumulates in the skin with age in a subset of dermal fibroblasts and in a few terminally differentiated keratinocytes. Progerin-positive fibroblasts localize near the basement membrane and in the papillary dermis of young adult skin; however, their numbers increase and their distribution reaches the deep reticular dermis in elderly skin. Our findings demonstrate that progerin expression is a biomarker of normal cellular aging and may potentially be linked to terminal differentiation and senescence in elderly individuals
Effect of Aspect Ratio on Field Emission Properties of ZnO Nanorod Arrays
ZnO nanorod arrays are prepared on a silicon wafer through a multi-step hydrothermal process. The aspect ratios and densities of the ZnO nanorod arrays are controlled by adjusting the reaction times and concentrations of solution. The investigation of field emission properties of ZnO nanorod arrays revealed a strong dependency on the aspect ratio and their density. The aspect ratio and spacing of ZnO nanorod arrays are 39 and 167 nm (sample C), respectively, to exhibit the best field emission properties. The turn-on field and threshold field of the nanorod arrays are 3.83 V/μm and 5.65 V/μm, respectively. Importantly, the sample C shows a highest enhancement of factorβ, which is 2612. The result shows that an optimum density and aspect ratio of ZnO nanorod arrays have high efficiency of field emission
Autism genetic database (AGD): a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites
<p>Abstract</p> <p>Background</p> <p>Autism is a highly heritable complex neurodevelopmental disorder, therefore identifying its genetic basis has been challenging. To date, numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism, but most discoveries either fail to be replicated or account for a small effect. Thus, in most cases the underlying causative genetic mechanisms are not fully understood. In the present work, the Autism Genetic Database (AGD) was developed as a literature-driven, web-based, and easy to access database designed with the aim of creating a comprehensive repository for all the currently reported genes and genomic copy number variations (CNVs) associated with autism in order to further facilitate the assessment of these autism susceptibility genetic factors.</p> <p>Description</p> <p>AGD is a relational database that organizes data resulting from exhaustive literature searches for reported susceptibility genes and CNVs associated with autism. Furthermore, genomic information about human fragile sites and noncoding RNAs was also downloaded and parsed from miRBase, snoRNA-LBME-db, piRNABank, and the MIT/ICBP siRNA database. A web client genome browser enables viewing of the features while a web client query tool provides access to more specific information for the features. When applicable, links to external databases including GenBank, PubMed, miRBase, snoRNA-LBME-db, piRNABank, and the MIT siRNA database are provided.</p> <p>Conclusion</p> <p>AGD comprises a comprehensive list of susceptibility genes and copy number variations reported to-date in association with autism, as well as all known human noncoding RNA genes and fragile sites. Such a unique and inclusive autism genetic database will facilitate the evaluation of autism susceptibility factors in relation to known human noncoding RNAs and fragile sites, impacting on human diseases. As a result, this new autism database offers a valuable tool for the research community to evaluate genetic findings for this complex multifactorial disorder in an integrated format. AGD provides a genome browser and a web based query client for conveniently selecting features of interest. Access to AGD is freely available at <url>http://wren.bcf.ku.edu/</url>.</p
- …