179 research outputs found

    A Fiber-Optic Fluorescence Microscope Using a Consumer-Grade Digital Camera for In Vivo Cellular Imaging

    Get PDF
    BACKGROUND: Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. METHODS: The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. FINDINGS: The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. CONCLUSION: Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings

    A Systematic Review of Fitness Apps and Their Potential Clinical and Sports Utility for Objective and Remote Assessment of Cardiorespiratory Fitness

    Get PDF
    Key Points The validity and reliability of existing and/or underdevelopment fitness apps should be further investigated. Physiological signals should be incorporated into fitness apps, such as heart rate measures using a smartphone camera, during or after exercise testing. There is a need to develop interoperable fitness apps (e.g., different languages, apps integrated into both app markets, data that is device-independent). Fitness apps should incorporate evidence-based cutpoints of CRF, allowing interpretation of fitness testing resultsWe are grateful to Ms Carmen Sainz-Quinn for assistance with the English language.Background Cardiorespiratory fitness (CRF) assessment provides key information regarding general health status that has high clinical utility. In addition, in the sports setting, CRF testing is needed to establish a baseline level, prescribe an individualized training program and monitor improvement in athletic performance. As such, the assessment of CRF has both clinical and sports utility. Technological advancements have led to increased digitization within healthcare and athletics. Nevertheless, further investigation is needed to enhance the validity and reliability of existing fitness apps for CRF assessment in both contexts. Objectives The present review aimed to (1) systematically review the scientific literature, examining the validity and reliability of apps designed for CRF assessment; and (2) systematically review and qualitatively score available fitness apps in the two main app markets. Lastly, this systematic review outlines evidence-based practical recommendations for developing future apps that measure CRF. Data Sources The following sources were searched for relevant studies: PubMed, Web of Science®, ScopusTM, and SPORTDiscus, and data was also found within app markets (Google Play and the App Store). Study Eligibility Criteria Eligible scientific studies examined the validity and/or reliability of apps for assessing CRF through a field-based fitness test. Criteria for the app markets involved apps that estimated CRF. Study Appraisal and Synthesis Methods The scientific literature search included four major electronic databases and the timeframe was set between 01 January 2000 and 31 October 2018. A total of 2796 articles were identified using a set of fitness-related terms, of which five articles were finally selected and included in this review. The app market search was undertaken by introducing keywords into the search engine of each app market without specified search categories. A total of 691 apps were identified using a set of fitness-related terms, of which 88 apps were finally included in the quantitative and qualitative synthesis. Results Five studies focused on the scientific validity of fitness tests with apps, while only two of these focused on reliability. Four studies used a sub-maximal fitness test via apps. Out of the scientific apps reviewed, the SA-6MWTapp showed the best validity against a criterion measure (r = 0.88), whilst the InterWalk app showed the highest test–retest reliability (ICC range 0.85–0.86). Limitations Levels of evidence based on scientific validity/reliability of apps and on commercial apps could not be robustly determined due to the limited number of studies identified in the literature and the low-to-moderate quality of commercial apps. Conclusions The results from this scientific review showed that few apps have been empirically tested, and among those that have, not all were valid or reliable. In addition, commercial apps were of low-to-moderate quality, suggesting that their potential for assessing CRF has yet to be realized. Lastly, this manuscript has identified evidence-based practical recommendations that apps might potentially offer to objectively and remotely assess CRF as a complementary tool to traditional methods in the clinical and sports settings

    Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning

    Get PDF
    Transplantation of neural progenitors derived from human embryonic stem cells (hESCs) provides a potential therapy for ischemic stroke. However, poor graft survival within the host environment has hampered the benefits and applications of cell-based therapies. The present investigation tested a preconditioning strategy to enhance hESC tolerance, thereby improving graft survival and the therapeutic potential of hESC transplantation. UC06 hESCs underwent neural induction and terminal differentiation for up to 30 days, becoming neural lineage cells, exhibiting extensive neurites and axonal projections, generating synapses and action potentials. To induce a cytoprotective phenotype, hESC-derived neurospheres were cultured at 0.1% oxygen for 12 h, dissociated and plated for terminal differentiation under 21% oxygen. Immunocytochemistry and electrophysiology demonstrated the ‘hypoxic preconditioning' promoted neuronal differentiation. Western blotting revealed significantly upregulated oxygen-sensitive transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α, while producing a biphasic response within HIF targets, including erythropoietin, vascular endothelial growth factor and Bcl-2 family members, during hypoxia and subsequent reoxygenation. This cytoprotective phenotype resulted in a 50% increase in both total and neural precursor cell survival after either hydrogen peroxide insult or oxygen–glucose deprivation. Cellular protection was maintained for at least 5 days and corresponded to upregulation of neuroprotective proteins. These results suggest that hypoxic preconditioning could be used to improve the effectiveness of human neural precursor transplantation therapies

    Bayesian Estimation of Animal Movement from Archival and Satellite Tags

    Get PDF
    The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as existing knowledge of the animal's potential range, light levels or direct location estimates, auxiliary data, and movement models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking data using readily available tools

    Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    Get PDF
    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia

    Resolution of inflammation: a new therapeutic frontier

    Get PDF
    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field

    The LUX-ZEPLIN (LZ) Experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements
    corecore