43 research outputs found

    Higher yields and lower methane emissions with new rice cultivars

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Breeding high-yielding rice cultivars through increasing biomass is a key strategy to meet rising global food demands. Yet, increasing rice growth can stimulate methane (CH4 ) emissions, exacerbating global climate change, as rice cultivation is a major source of this powerful greenhouse gas. Here, we show in a series of experiments that high-yielding rice cultivars actually reduce CH4 emissions from typical paddy soils. Averaged across 33 rice cultivars, a biomass increase of 10% resulted in a 10.3% decrease in CH4 emissions in a soil with a high carbon (C) content. Compared to a low-yielding cultivar, a high-yielding cultivar significantly increased root porosity and the abundance of methane-consuming microorganisms, suggesting that the larger and more porous root systems of high-yielding cultivars facilitated CH4 oxidation by promoting O2 transport to soils. Our results were further supported by a meta-analysis, showing that high-yielding rice cultivars strongly decrease CH4 emissions from paddy soils with high organic C contents. Based on our results, increasing rice biomass by 10% could reduce annual CH4 emissions from Chinese rice agriculture by 7.1%. Our findings suggest that modern rice breeding strategies for high-yielding cultivars can substantially mitigate paddy CH4 emission in China and other rice growing regions.This work was supported by the National Key Research and Development Program China (2016YFD0300903, 2016YFD0300501, and 2015BAC02B02), Special Fund for Agro-scientific Research in the Public Interest (201503122), Central Public interest Scientific Institution Basal Research Fund of Institute of Crop Science, the Innovation Program of CAAS (Y2016PT12, Y2016XT01), and the China Scholarship Council

    Urban development and visual culture: Commodifying the gaze in the regeneration of Tigné Point, Malta

    Get PDF
    This paper explores some of the hitherto under-researched intersections between urban (re)development, urban planning and visual culture. What emerges is an academic context that, to date, has largely compartmentalised discrete literatures on ‘view’, ‘value of the view’ and cityscape change, (re)Imagineering and (re)scripting). It shows how materialising processes associated with the commodification of a panoramic view in politico-economic and cultural terms can be used to transform and regenerate along neoliberal lines. It demonstrates how panoramas, when treated as a commodity within the context of neoliberal capitalism, are appropriated, (re)imagined and (re)scripted by architects and property developers to create high status, residential and commercial space for an affluent élite. As such, panoramas are a mechanism for the acceleration of capital accumulation that inherently create new and reinforce existing spatial inequalities. This study draws on research into the commodification of the view of the historic city of Valletta in the redevelopment of Tigné Point, the largest, most comprehensive regeneration scheme in Malta in recent years

    Acceleration of Greenland ice mass loss in spring 2004

    Full text link
    In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 +/- 36 km3 yr(-1), equivalent to a global sea level rise of 0.5 +/- 0.1 mm yr(-1). The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9g€¯mm to global mean sea level, with the rate of mass loss rising from 105g€¯Gtg€¯yr-1 between 1992 and 1996 to 372g€¯Gtg€¯yr-1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9g€¯Gtg€¯yr-1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86g€¯Gtg€¯yr-1 in 2017 to 444g€¯Gtg€¯yr-1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9g€¯Gtg€¯yr-1) and, to a lesser extent, from the Antarctic Peninsula (13±5g€¯Gtg€¯yr-1). East Antarctica remains close to a state of balance, with a small gain of 3±15g€¯Gtg€¯yr-1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at 10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)

    Tailored Print Communication and Telephone Motivational Interviewing Are Equally Successful in Improving Multiple Lifestyle Behaviors in a Randomized Controlled Trial

    Get PDF
    Background: Computer tailoring and motivational interviewing show promise in promoting lifestyle change, despite few head-to-head comparative studies. Purpose: Vitalum is a randomized controlled trial in which the efficacy of these methods was compared in changing physical activity and fruit and vegetable consumption in middle-aged Dutch adults. Methods: Participants (n?=?1,629) were recruited via 23 general practices and randomly received either four tailored print letters, four motivational telephone calls, two of each type of intervention, or no information. The primary outcomes were absolute change in self-reported physical activity and fruit and vegetable consumption. Results: All three intervention groups (i.e., the tailored letters, the motivational calls, and the combined version) were equally and significantly more effective than the control group in increasing physical activity (hours/day), intake of fruit (servings/day), and consumption of vegetables (grams/day) from baseline to the intermediate measurement (week 25), follow-up 1 (week 47) and 2 (week 73). Effect sizes (Cohen's d) ranged from 0.15 to 0.18. Participants rated the interventions positively; interviews were more positively evaluated than letters. Conclusions: Tailored print communication and telephone motivational interviewing or their combination are equally successful in changing multiple behaviors. © 2010 The Author(s)

    Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020

    Get PDF
    Ice losses from the Greenland and Antarctic ice sheets have accelerated since the 1990s, accounting for a significant increase in the global mean sea level. Here, we present a new 29-year record of ice sheet mass balance from 1992 to 2020 from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE). We compare and combine 50 independent estimates of ice sheet mass balance derived from satellite observations of temporal changes in ice sheet flow, in ice sheet volume, and in Earth's gravity field. Between 1992 and 2020, the ice sheets contributed 21.0±1.9 mm to global mean sea level, with the rate of mass loss rising from 105 Gt yr−1 between 1992 and 1996 to 372 Gt yr−1 between 2016 and 2020. In Greenland, the rate of mass loss is 169±9 Gt yr−1 between 1992 and 2020, but there are large inter-annual variations in mass balance, with mass loss ranging from 86 Gt yr−1 in 2017 to 444 Gt yr−1 in 2019 due to large variability in surface mass balance. In Antarctica, ice losses continue to be dominated by mass loss from West Antarctica (82±9 Gt yr−1) and, to a lesser extent, from the Antarctic Peninsula (13±5 Gt yr−1). East Antarctica remains close to a state of balance, with a small gain of 3±15 Gt yr−1, but is the most uncertain component of Antarctica's mass balance. The dataset is publicly available at https://doi.org/10.5285/77B64C55-7166-4A06-9DEF-2E400398E452 (IMBIE Team, 2021)
    corecore