132 research outputs found

    Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer

    Get PDF
    BACKGROUND: IL-1beta has been implicated in inflammatory episode. In view of the inflammatory nature of cancer cachexia, we determined the predictive value of IL-1B-31 T/C, -511 C/T, +3954 C/T and IL-1RN VNTR gene polymorphisms on the occurrence of cachexia associated with locally advanced gastric cancer. METHODS: The study included 214 patients and 230 healthy volunteers. Genomic DNA was prepared from peripheral blood leukocytes. Genotypes and allele frequencies were determined in patients and healthy controls using restriction fragment length polymorphism analysis of polymerase chain reaction products. RESULTS: The overall frequencies of IL-1B-31 T, -511 T, +3954 T and IL-1RN VNTR alleles in patients with locally advanced gastric cancer were all comparable with those in controls. No significant differences were found in the distribution of IL-1B-31 T, -511 T and IL-1RN VNTR between patients with cachexia and without. Patients with cachexia showed a significantly higher prevalence of IL-1B+3954 T allele than those without (P = 0.018). In a logistic regression analysis adjusted for actual weight, carcinoma location and stage, the IL-1B+3954 CT genotype was associated with an odds ratio of 2.512 (95% CI, 1.180 – 5.347) for cachexia. CONCLUSION: The IL-1B+3954 T allele is a major risk for cachexia from locally gastric cancer. Genetic factors studied are not likely to play an important role in the determination of susceptibility to locally advanced gastric cancer

    Fine-scale detection of population-specific linkage disequilibrium using haplotype entropy in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The creation of a coherent genomic map of recent selection is one of the greatest challenges towards a better understanding of human evolution and the identification of functional genetic variants. Several methods have been proposed to detect linkage disequilibrium (LD), which is indicative of natural selection, from genome-wide profiles of common genetic variations but are designed for large regions.</p> <p>Results</p> <p>To find population-specific LD within small regions, we have devised an entropy-based method that utilizes differences in haplotype frequency between populations. The method has the advantages of incorporating multilocus association, conciliation with low allele frequencies, and independence from allele polarity, which are ideal for short haplotype analysis. The comparison of HapMap SNPs data from African and Caucasian populations with a median resolution size of ~23 kb gave us novel candidates as well as known selection targets. Enrichment analysis for the yielded genes showed associations with diverse diseases such as cardiovascular, immunological, neurological, and skeletal and muscular diseases. A possible scenario for a selective force is discussed. In addition, we have developed a web interface (ENIGMA, available at <url>http://gibk21.bse.kyutech.ac.jp/ENIGMA/index.html</url>), which allows researchers to query their regions of interest for population-specific LD.</p> <p>Conclusion</p> <p>The haplotype entropy method is powerful for detecting population-specific LD embedded in short regions and should contribute to further studies aiming to decipher the evolutionary histories of modern humans.</p

    Effects of Soil Water and Nitrogen on Growth and Photosynthetic Response of Manchurian Ash (Fraxinus mandshurica) Seedlings in Northeastern China

    Get PDF
    Soil water and nitrogen (N) are considered to be the main environmental factors limiting plant growth and photosynthetic capacity. However, less is known about the interactive effects of soil water and N on tree growth and photosynthetic response in the temperate ecosystem. seedlings. The seedlings were exposed to three water regimes including natural precipitation (CK), higher precipitation (HW) (CK +30%) and lower precipitation (LW) (CK −30%), and both with and without N addition for two growing seasons. We demonstrated that water and N supply led to a significant increase in the growth and biomass production of the seedlings. LW treatment significantly decreased biomass production and leaf N content, but they showed marked increases in N addition. N addition could enhance the photosynthetic capability under HW and CK conditions. Leaf chlorophyll content and the initial activity of Rubisco were dramatically increased by N addition regardless of soil water condition. The positive relationships were found between photosynthetic capacity, leaf N content, and SLA in response to water and N supply in the seedling. Rubisco expression was up-regulated by N addition with decreasing soil water content. Immunofluorescent staining showed that the labeling for Rubisco was relatively low in leaves of the seedlings under LW condition. The accumulation of Rubisco was increased in leaf tissues of LW by N addition. seedlings, which may provide novel insights on the potential responses of the forest ecosystem to climate change associated with increasing N deposition

    An in vivo cis-Regulatory Screen at the Type 2 Diabetes Associated TCF7L2 Locus Identifies Multiple Tissue-Specific Enhancers

    Get PDF
    Genome-wide association studies (GWAS) have repeatedly shown an association between non-coding variants in the TCF7L2 locus and risk for type 2 diabetes (T2D), implicating a role for cis-regulatory variation within this locus in disease etiology. Supporting this hypothesis, we previously localized complex regulatory activity to the TCF7L2 T2D-associated interval using an in vivo bacterial artificial chromosome (BAC) enhancer-trapping reporter strategy. To follow-up on this broad initial survey of the TCF7L2 regulatory landscape, we performed a fine-mapping enhancer scan using in vivo mouse transgenic reporter assays. We functionally interrogated approximately 50% of the sequences within the T2D-associated interval, utilizing sequence conservation within this 92-kb interval to determine the regulatory potential of all evolutionary conserved sequences that exhibited conservation to the non-eutherian mammal opossum. Included in this study was a detailed functional interrogation of sequences spanning both protective and risk alleles of single nucleotide polymorphism (SNP) rs7903146, which has exhibited allele-specific enhancer function in pancreatic beta cells. Using these assays, we identified nine segments regulating various aspects of the TCF7L2 expression profile and that constitute nearly 70% of the sequences tested. These results highlight the regulatory complexity of this interval and support the notion that a TCF7L2 cis-regulatory disruption leads to T2D predisposition

    Rebooting the human mitochondrial phylogeny: an automated and scalable methodology with expert knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA is an ideal source of information to conduct evolutionary and phylogenetic studies due to its extraordinary properties and abundance. Many insights can be gained from these, including but not limited to screening genetic variation to identify potentially deleterious mutations. However, such advances require efficient solutions to very difficult computational problems, a need that is hampered by the very plenty of data that confers strength to the analysis.</p> <p>Results</p> <p>We develop a systematic, automated methodology to overcome these difficulties, building from readily available, public sequence databases to high-quality alignments and phylogenetic trees. Within each stage in an autonomous workflow, outputs are carefully evaluated and outlier detection rules defined to integrate expert knowledge and automated curation, hence avoiding the manual bottleneck found in past approaches to the problem. Using these techniques, we have performed exhaustive updates to the human mitochondrial phylogeny, illustrating the power and computational scalability of our approach, and we have conducted some initial analyses on the resulting phylogenies.</p> <p>Conclusions</p> <p>The problem at hand demands careful definition of inputs and adequate algorithmic treatment for its solutions to be realistic and useful. It is possible to define formal rules to address the former requirement by refining inputs directly and through their combination as outputs, and the latter are also of help to ascertain the performance of chosen algorithms. Rules can exploit known or inferred properties of datasets to simplify inputs through partitioning, therefore cutting computational costs and affording work on rapidly growing, otherwise intractable datasets. Although expert guidance may be necessary to assist the learning process, low-risk results can be fully automated and have proved themselves convenient and valuable.</p

    Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement

    Get PDF
    Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species’ gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed

    Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    Get PDF
    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change

    Why a successful task substitution in glaucoma care could not be transferred from a hospital setting to a primary care setting: A qualitative study

    Get PDF
    Background: Healthcare systems are challenged by a demand that exceeds available resources. One policy to meet this challenge is task substitution-transferring tasks to other professions and settings. Our study aimed to explore stakeholders' perceived feasibility of transferring hospital-based monitoring of stable glaucoma patients to primary care optometrists.Methods: A case study was undertaken in the Rotterdam Eye Hospital (REH) using semi-structured interviews and document reviews. They were inductively analysed using three implementation related theoretical perspectives: sociological theories on professionalism, management theories, and applied political analysis.Results: Currently it is not feasible to use primary care optometrists as substitutes for optometrists and ophthalmic technicians working in a hospital-based gl
    corecore