41 research outputs found

    Rapid Changes in the Light/Dark Cycle Disrupt Memory of Conditioned Fear in Mice

    Get PDF
    Background: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/ dark (LD) cycle. Such ‘‘jet lag’ ’ treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. Methodology/Principal Findings: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. Conclusions/Significance: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that

    A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis.

    Get PDF
    BACKGROUND: Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed. RESULTS: Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated. CONCLUSION: The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells

    AMPD1 gene mutations are associated with obesity and diabetes in Polish patients with cardiovascular diseases

    Get PDF
    Previous studies showed an association of the common functional polymorphism (C34T, Gln12Stop) in the adenosine monophosphate deaminase-1 (AMPD1) gene with survival in heart failure (HF) and/or coronary artery disease (CAD). The aim of the study was to search for other mutations in selected regions of the AMPD1 gene in Polish CAD and HF patients, and to analyze their associations with obesity and diabetes. Exons 2, 3, 5, and 7 of AMPD1 were scanned for mutations in 97 patients with CAD without HF (CAD+ HF−), 104 patients with HF (HF+), and 200 newborns from North-Western Poland using denaturing high-performance liquid chromatography (DHPLC), polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), and direct sequencing. Frequencies of AMPD1 C34T mutation, as well as novel A99G, G512A, IVS4-6delT, and C784T sequence alterations, were similar in the three groups, but 860T mutated allele was less frequent in the combined CAD+ HF− and HF+ groups than in the controls (1.7% vs. 4.3%, p = 0.040). Heterozygous 34CT genotype was associated with lower (odds ratio [OR] = 0.32, 95% confidence interval [CI] = 0.13–0.81) and 860AT with higher (OR = 13.7, 95%CI = 1.6–118) prevalence of diabetes or hyperglycemia in relation to wild-type homozygotes. Abdominal obesity was more frequent in 860AT patients than in wild-type homozygotes and 34CT heterozygotes (86% vs. 40% vs. 29%, p < 0.05). Nine genes containing polymorphisms linked with AMPD1 C34T mutation were found in the HapMap database. AMPD1 C34T nonsense mutation is associated with reduced prevalence of diabetes and obesity in patients with CAD or HF, but A860T substitution seems to exert opposite metabolic effects and should always be accounted for in the studies of the AMPD1 genotype

    Experimental ‘Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters

    Get PDF
    Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings: In the present study, we investigated whether experimental ‘jet lag ’ (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learnin

    Overcoming chloroquine resistance in malaria: Design, synthesis and structure-activity relationships of novel chemoreversal agents.

    No full text
    Malaria remains a significant infectious disease with even artemisinin-based therapies now facing resistance in the field. Development of new therapies is urgently needed, either by finding new compounds with unique modes of action, or by reversing resistance towards known drugs with 'chemosensitizers' or 'chemoreversal' agents (CRA). Concerning the latter, we have focused on the resistance mechanisms developed against chloroquine (CQ). We have synthesized a series of compounds related to previously identified CRAs, and found promising novel compounds. These compounds show encouraging results in a coumarin labeled chloroquine uptake assay, exhibiting a dose response in resensitising parasites to the antimalarial effects of chloroquine. Selected compounds show consistent potency across a panel of chloroquine and artemisinin sensitive and resistant parasites, and a wide therapeutic window. This data supports further study of CRAs in the treatment of malaria and, ultimately, their use in chloroquine-based combination therapies
    corecore