19 research outputs found

    Axonal Transmission in the Retina Introduces a Small Dispersion of Relative Timing in the Ganglion Cell Population Response

    Get PDF
    Background: Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye. Methodology/Principal Findings: We 'imaged' the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3 +/- 0.3 m/sec, mean +/- SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated. Conclusion/Significance: Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature

    Astrocytic Ca2+ Waves Guide CNS Growth Cones to Remote Regions of Neuronal Activity

    Get PDF
    Activity plays a critical role in network formation during developmental, experience-dependent, and injury related remodeling. Here we report a mechanism by which axon trajectory can be altered in response to remote neuronal activity. Using photoconductive stimulation to trigger high frequency action potentials in rat hippocampal neurons in vitro, we find that activity functions as an attractive cue for growth cones in the local environment. The underlying guidance mechanism involves astrocyte Ca2+ waves, as the connexin-43 antagonist carbenoxolone abolishes the attraction when activity is initiated at a distance greater than 120 µm. The asymmetric growth cone filopodia extension that precedes turning can be blocked with CNQX (10 µM), but not with the ATP and adenosine receptor antagonists suramin (100 µM) and alloxazine (4 µM), suggesting non-NMDA glutamate receptors on the growth cone mediate the interaction with astrocytes. These results define a potential long-range signalling pathway for activity-dependent axon guidance in which growth cones turn towards directional, temporally coordinated astrocyte Ca2+ waves that are triggered by neuronal activity. To assess the viability of the guidance effect in an injury paradigm, we performed the assay in the presence of conditioned media from lipopolysaccharide (LPS) activated purified microglial cultures, as well as directly activating the glia present in our co-cultures. Growth cone attraction was not inhibited under these conditions, suggesting this mechanism could be used to guide regeneration following axonal injury

    Fitness cost but no selection for virulence in Meloidogyne incognita after two consecutive crops of eggplant grafted onto Solanum torvum

    No full text
    The eggplant Solanum melongena ‘Cristal’, either ungrafted or grafted onto theSolanum torvum ‘Brutus’ rootstock, was cultivated for two consecutive years in the same plots in a plastic greenhouse to assess the level of resistance to Meloidogyne incognitaand crop yield. At the end of the second crop, the putative selection for virulence of the nema-tode subpopulations coming from infected ungrafted and grafted eggplant was assessed in the eggplant and inS. torvumin a pot experiment. Nematode population densities at transplantation in 2017 ranged from 2 to 378 100 cm 3of soiland did not differ between ungrafted and grafted eggplant.Postprint (updated version

    Host suitability of solanum torvum cultivars to Meloidogyne incognita and M. javanica and population dynamics

    No full text
    Several experiments were carried out to assess the performance of commercial Solanum torvum cultivars against the root knot nematodes Meloidogyne incognitaandM. javanicain Spain. The response ofS. torvum rootstock cultivars Brutus, Espina, Salutamu and Torpedo againstM. incognita andMi-1.2(a) virulentM. javanicaisolates was deter-mined in pot experiments, and of ‘Brutus’ to anN-virulent isolate ofM. incognita, compared with that of the eggplantS. melongena‘Cristal’.Postprint (updated version

    Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice

    No full text
    Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in pa-tatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepa-tocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericel-lular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases
    corecore