94 research outputs found

    Illusionary Self-Motion Perception in Zebrafish

    Get PDF
    Zebrafish mutant belladonna (bel) carries a mutation in the lhx2 gene (encoding a Lim domain homeobox transcription factor) that results in a defect in retinotectal axon pathfinding, which can lead to uncrossed optic nerves failing to form an optic chiasm. Here, we report on a novel swimming behavior of the bel mutants, best described as looping. Together with two previously reported oculomotor instabilities that have been related to achiasmatic bel mutants, reversed optokinetic response (OKR) and congenital nystagmus (CN, involuntary conjugate oscillations of both eyes), looping opens a door to study the influence of visual input and eye movements on postural balance. Our result shows that looping correlates perfectly with reversed OKR and CN and is vision-dependent and contrast sensitive. CN precedes looping and the direction of the CN slow phase is predictive of the looping direction, but is absent during looping. Therefore, looping may be triggered by CN in bel. Moreover, looping in wild-type fish can also be evoked by whole-field motion, suggesting that looping in a bel mutant larvae is a result of self-motion perception. In contrary to previous hypotheses, our findings indicate that postural control in vertebrates relies on both direct visual input (afference signal) and eye-movement-related signals (efference copy or reafference signal)

    Longer sleep is associated with lower BMI and favorable metabolic profiles in UK adults: Findings from the National Diet and Nutrition Survey

    Get PDF
    Ever more evidence associates short sleep with increased risk of metabolic diseases such as obesity, which may be related to a predisposition to non-homeostatic eating. Few studies have concurrently determined associations between sleep duration and objective measures of metabolic health as well as sleep duration and diet, however. We therefore analyzed associations between sleep duration, diet and metabolic health markers in UK adults, assessing associations between sleep duration and 1) adiposity, 2) selected metabolic health markers and 3) diet, using National Diet and Nutrition Survey data. Adults (n = 1,615, age 19–65 years, 57.1% female) completed questions about sleep duration and 3 to 4 days of food diaries. Blood pressure and waist circumference were recorded. Fasting blood lipids, glucose, glycated haemoglobin (HbA1c), thyroid hormones, and high-sensitivity C-reactive protein (CRP) were measured in a subset of participants. We used regression analyses to explore associations between sleep duration and outcomes. After adjustment for age, ethnicity, sex, smoking, and socioeconomic status, sleep duration was negatively associated with body mass index (-0.46 kg/m2 per hour, 95% CI -0.69 to -0.24 kg/m2, p < 0.001) and waist circumference (-0.9 cm per hour, 95% CI -1.5 to -0.3cm, p = 0.004), and positively associated with high-density lipoprotein cholesterol (0.03 mmol/L per hour, 95% CI 0.00 to 0.05, p = 0.03). Sleep duration tended to be positively associated with free thyroxine levels and negatively associated with HbA1c and CRP (p = 0.09 to 0.10). Contrary to our hypothesis, sleep duration was not associated with any dietary measures (p ≥ 0.14). Together, our findings show that short-sleeping UK adults are more likely to have obesity, a disease with many comorbidities

    EphA3 Expressed in the Chicken Tectum Stimulates Nasal Retinal Ganglion Cell Axon Growth and Is Required for Retinotectal Topographic Map Formation

    Get PDF
    BACKGROUND: Retinotopic projection onto the tectum/colliculus constitutes the most studied model of topographic mapping and Eph receptors and their ligands, the ephrins, are the best characterized molecular system involved in this process. Ephrin-As, expressed in an increasing rostro-caudal gradient in the tectum/colliculus, repel temporal retinal ganglion cell (RGC) axons from the caudal tectum and inhibit their branching posterior to their termination zones. However, there are conflicting data regarding the nature of the second force that guides nasal axons to invade and branch only in the caudal tectum/colliculus. The predominant model postulates that this second force is produced by a decreasing rostro-caudal gradient of EphA7 which repels nasal optic fibers and prevents their branching in the rostral tectum/colliculus. However, as optic fibers invade the tectum/colliculus growing throughout this gradient, this model cannot explain how the axons grow throughout this repellent molecule. METHODOLOGY/PRINCIPAL FINDINGS: By using chicken retinal cultures we showed that EphA3 ectodomain stimulates nasal RGC axon growth in a concentration dependent way. Moreover, we showed that nasal axons choose growing on EphA3-expressing cells and that EphA3 diminishes the density of interstitial filopodia in nasal RGC axons. Accordingly, in vivo EphA3 ectodomain misexpression directs nasal optic fibers toward the caudal tectum preventing their branching in the rostral tectum. CONCLUSIONS: We demonstrated in vitro and in vivo that EphA3 ectodomain (which is expressed in a decreasing rostro-caudal gradient in the tectum) is necessary for topographic mapping by stimulating the nasal axon growth toward the caudal tectum and inhibiting their branching in the rostral tectum. Furthermore, the ability of EphA3 of stimulating axon growth allows understanding how optic fibers invade the tectum growing throughout this molecular gradient. Therefore, opposing tectal gradients of repellent ephrin-As and of axon growth stimulating EphA3 complement each other to map optic fibers along the rostro-caudal tectal axis

    Lipid profile in actinic keratosis and basal cell carcinoma

    No full text
    Background The lipid content of the skin and its changes are important in the pathogenesis of many disorders affecting the skin, particularly actinic keratosis (AK) and basal cell carcinoma (BCC)
    corecore