16 research outputs found

    Rickettsia Phylogenomics: Unwinding the Intricacies of Obligate Intracellular Life

    Get PDF
    BACKGROUND: Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular alpha-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). METHODOLOGY/PRINCIPAL FINDINGS: We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (approximately 1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. CONCLUSION/SIGNIFICANCE: Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets

    Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment

    Get PDF
    BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment

    Anatomic Cartography of the Hypogastric Nerves and Surgical Insights for Autonomic Preservation during Radical Pelvic Procedures.

    No full text
    STUDY OBJECTIVE: To clarify the relationship of hypogastric nerves (HNs) with several pelvic anatomic landmarks and to assess any anatomic differences between the 2 sides of the pelvis, both in cadaveric and in vivo dissections. DESIGN: Prospective observational study. SETTING: An anatomic theater for cadaveric dissections and a university hospital for in vivo laparoscopy. PATIENTS: Five nulliparous female cadavers underwent laparotomic dissection; 10 nulliparous patients underwent laparoscopic surgery for rectosigmoid endometriosis without posterolateral parametrial infiltration. INTERVENTIONS: Measurements of the closest distance between HNs and ureters, the midsagittal plane, the midcervical plane, and uterosacral ligaments on both hemipelvises. A comparison of anatomic data of the 2 hemipelvises was conducted. MEASUREMENTS AND MAIN RESULTS: The right and left HNs were identified in all specimens, both on cadavers and in vivo dissections. A wide anatomic variability was reported. Regarding the differences between the 2 hemipelvises, we found that the right HN was significantly (p <.001) farther to the ureter (mean\u202f=\u202f14.5 mm; range, 10-25 mm) than the left one (mean\u202f=\u202f8.6 mm; range, 7-12 mm). The HN was closer to the midsagittal plane on the right side (mean\u202f=\u202f14.6 mm; range, 12-17 mm) than on the left side (mean\u202f=\u202f21.6 mm; range, 19-25 mm). The midcervical plane was found 2.7 mm (range, 2-4 mm) to the left of the midsagittal one. The right HN was found to be nonsignificantly closer to the midcervical plane and the uterosacral ligament on the right side than on the left side (p >.05). CONCLUSIONS: Despite a wide anatomic variability of position and appearance, the HNs are reproducibly identifiable using an "interfascial" technique and considering the ureters and uterosacral ligaments as anatomic landmarks
    corecore