72 research outputs found
Genetic Counselling and Family in IBD: 30 years' Experience at the Cleveland Clinic
The Cleveland Clinic has followed 1288 patients with inflammatory
bowel disease (IBD) (437 with mucosa! ulcerative colitis and 851 with
Crohn's disease) from 1955 through 1984. Of the 437 patients with mucosal
ulcerative colitis, the index patient had one or more family members develop
IBD. These data indicate the need for the treating physician to institute case-finding
questions within the family so that early diagnoses can be established.
From 1975 through 1984, 94 patients had a positive family history and 63 had
additional family members with disease. The highest risk group was the sibling-sibling
group (6.4% in mucosa! ulcerative colitis and 8.3% in Crohn's disease).
Both groups had similar percentages for all immediate family members; namely,
16.5% and 17.3%. In the group of patients reported from 1975 to 1984, the
location of disease in the index patient and the immediate family member was
the same in 67.5% and different in 30.0%. In this same group of patients, the
disease similarity in the index patient and the immediate family member was the
same in 86.8% and different in 12.0%. These data suggest that while genetic
factors undoubtedly increase the susceptibility for IBD, there is no specific
genetic pattern identified. Also, environmental and other factors may be present.
The data also suggest that the age of onset is a factor, perhaps showing increased
association with a positive family history
At the brink of eusociality: transcriptomic correlates of worker behaviour in a small carpenter bee
Background: There is great interest in understanding the genomic underpinnings of social evolution, in particular, the evolution of eusociality (caste-containing societies with non-reproductives that care for siblings). Subsociality is a key precursor for the evolution of eusociality and characterized by prolonged parental care and parent-offspring interaction. Here, we provide the first transcriptomic data for the small carpenter bee, Ceratina calcarata. This species is of special interest because it is subsocial and in the same family as the highly eusocial honey bee, Apis mellifera. In addition, some C. calcarata females demonstrate alloparental care without reproduction, which provides a unique opportunity to study worker behaviour in a non-eusocial species. Results: We uncovered similar gene expression patterns related to maternal care and sibling care in different groups of females. This agrees with the maternal heterochrony hypothesis, specifically, that changes in timing of offspring care gene expression are related to worker behaviour in incipient insect societies. In addition, we also detected some similarity to caste-related gene expression patterns in highly eusocial honey bees, and uncovered large lifetime changes in gene expression that accompany shifts in reproductive and maternal care behaviour. Conclusions: For Ceratina calcarata, we found that transcript expression profiles were most similar between sibling care and maternal care females. The maternal care behaviour exhibited post-reproductively by Ceratina mothers is concordant in terms of transcript expression with the alloparental care exhibited by workers. In line with theoretical predictions, our data are consistent with the maternal heterochrony hypothesis for the evolutionary development of worker behaviour in subsocial bees
Sibling recognition in thirteen-lined ground squirrels: effects of genetic relatedness, rearing association, and olfaction
I investigated sibling-sibling recognition in captive thirteen-lined ground squirrels ( Spermophilus tridecemlineatus ) by cross-fostering lab-born pups shortly after birth. When young reached about 45 days of age, I observed dyadic interactions in a test arena of pairs from four relatedness X rearing groups, and recorded the frequency of âexploratoryâ encounters between individuals. Sibs-reared together and nonsibs-reared together exhibited significantly fewer exploratory encounters than either sibs-reared apart or nonsibsreared apart. Young reared together were equally exploratory, regadless of relatedness; similarly, young reared apart, whether they were sibs or nonsibs, showed similar levels of exploration. Thus, the differential treatment of siblings in the lab appears to be based on rearing association and not genetic relatedness per se. I interpret this recognition based on association (rearing familiarity) in the context of the species' social organization and compare my results on S. tridecemlineatus with similar studies on S. beldingi, S. parryii , and S. richardsonii . I also used an olfactory impairment technique (zinc sulfate) and found that differential treatment in thirteen-lined ground squirrels was influenced by olfactory cues.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46871/1/265_2004_Article_BF00299622.pd
Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning
More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insectsâ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation
Accelerated Evolution of Mitochondrial but Not Nuclear Genomes of Hymenoptera: New Evidence from Crabronid Wasps
Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae), and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera) based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase). The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes). Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of Apocrita is unlikely to be the major cause for the elevated substitution rates observed in hymenopteran mitochondrial genomes
- âŠ