40 research outputs found

    The Role of External Inputs and Internal Cycling in Shaping the Global Ocean Cobalt Distribution: Insights From the First Cobalt Biogeochemical Model

    Get PDF
    ©2018. The Authors. Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B 12 and is a co-factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state-of-the-art three-dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of > 0.7 in the surface and > 0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom-water oxygen conditions. The basin-scale distribution of cobalt supplied from margins is facilitated by the activity of manganese-oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability

    The interplay between regeneration and scavenging fluxes drives ocean iron cycling

    Get PDF
    Despite recent advances in observational data coverage, quantitative constraints on how different physical and biogeochemical processes shape dissolved iron distributions remain elusive, lowering confidence in future projections for iron-limited regions. Here we show that dissolved iron is cycled rapidly in Pacific mode and intermediate water and accumulates at a rate controlled by the strongly opposing fluxes of regeneration and scavenging. Combining new data sets within a watermass framework shows that the multidecadal dissolved iron accumulation is much lower than expected from a meta-analysis of iron regeneration fluxes. This mismatch can only be reconciled by invoking significant rates of iron removal to balance iron regeneration, which imply generation of authigenic particulate iron pools. Consequently, rapid internal cycling of iron, rather than its physical transport, is the main control on observed iron stocks within intermediate waters globally and upper ocean iron limitation will be strongly sensitive to subtle changes to the internal cycling balance

    Replacement Times of a Spectrum of Elements in the North Atlantic Based on Thorium Supply

    Get PDF
    The measurable supply of 232 Th to the ocean can be used to derive the supply of other elements, which is more difficult to quantify directly. The measured inventory of an element divided by the derived supply yields a replacement time estimate, which in special circumstances is related to a residence time. As a proof of concept, Th-based supply rates imply a range in the replacement times of the rare earth elements in the North Atlantic that is consistent with the chemical reactivity of rare earth elements related to their ionic charge density. Similar estimates of replacement times for the bioactive trace elements (Fe, Mn, Zn, Cd, Cu, and Co), ranging from 50,000 years, demonstrate the broad range of elemental reactivity in the ocean. Here we discuss how variations in source composition, fractional solubility ratios, or noncontinental sources, such as hydrothermal vents, lead to uncertainties in Th-based replacement time estimates. We show that the constraints on oceanic replacement time provided by the Th-based calculations are broadly applicable in predicting how elements are distributed in the ocean and for some elements, such as Fe, may inform us on how the carbon cycle may be impacted by trace element supply and removal

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    H2S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe concentrations

    Get PDF
    Dissolved iron (DFe) concentrations in oxygen minimum zones (OMZs) of Eastern Boundary Upwelling Systems are enhanced as a result of high supply rates from anoxic sediments. However, pronounced variations in DFe concentrations in anoxic coastal waters of the Peruvian OMZ indicate that there are factors in addition to dissolved oxygen concentrations (O2) that control Fe cycling. Our study demonstrates that sediment-derived reduced Fe (Fe(II)) forms the main DFe fraction in the anoxic/euxinic water column off Peru, which is responsible for DFe accumulations of up to 200 nmol L-1. Lowest DFe values were observed in anoxic shelf waters in the presence of nitrate and nitrite. This reflects oxidation of sediment-sourced Fe(II) associated with nitrate/nitrite reduction and subsequent removal as particulate Fe(III) oxyhydroxides. Unexpectedly, the highest DFe levels were observed in waters with elevated concentrations of hydrogen sulfide (up to 4 µmol L-1) and correspondingly depleted nitrate/nitrite concentrations (<0.18 µmol L-1). Under these conditions, Fe removal was reduced through stabilization of Fe(II) as aqueous iron sulfide (FeSaqu) which comprises complexes (e.g., FeSH+) and clusters (e.g., Fe2S2|4H2O). Sulfidic events on the Peruvian shelf consequently enhance Fe availability, and may increase in frequency in future due to projected expansion and intensification of OMZs

    The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments

    Get PDF
    AbstractThe oceanic biogeochemical cycles of the transition metals have been eliciting considerable attention for some time. Many of them have isotope systems that are fractionated by key biological and chemical processes so that significant information about such processes may be gleaned from them. However, for many of these nascent isotopic systems we currently know too little of their modern oceanic mass balance, making the application of such systems to the past speculative, at best. Here we investigate the biogeochemical cycling of copper (Cu) and zinc (Zn) isotopes in the ocean. We present estimates for the isotopic composition of Cu and Zn inputs to the oceans based on new data presented here and published data. The bulk isotopic composition of dissolved Cu and Zn in the oceans (δ65Cu ∼+0.9‰, δ66Zn ∼+0.5‰) is in both cases heavier than their respective inputs (at around δ65Cu=+0.6‰ and δ66Zn=+0.3‰, respectively), implying a marine process that fractionates them and a resulting isotopically light sedimentary output. For the better-known molybdenum isotope system this is achieved by sorption to Fe–Mn oxides, and this light isotopic composition is recorded in Fe–Mn crusts. Hence, we present isotopic data for Cu and Zn in three Fe–Mn crusts from the major ocean basins, which yield δ65Cu=0.44±0.23‰ (mean and 2SD) and δ66Zn=1.04±0.21‰. Thus for Cu isotopes output to particulate Fe–Mn oxides can explain the heavy isotopic composition of the oceans, while for Zn it cannot. The heavy Zn in Fe–Mn crusts (and in all other authigenic marine sediments measured so far) implies that a missing light sink is still to be located. These observations are some of the first to place constraints on the modern oceanic mass balance of Cu and Zn isotopes
    corecore