20 research outputs found

    Three dimensional first-pass myocardial perfusion imaging at 3T: feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with ischemic heart disease, accurate assessment of the extent of myocardial perfusion deficit may be important in predicting prognosis of clinical cardiac outcomes. The aim of this study was to compare the ability of three dimensional (3D) and of two dimensional (2D) multi-slice myocardial perfusion imaging (MPI) using cardiovascular magnetic resonance (CMR) in determining the size of defects, and to demonstrate the feasibility of 3D MPI in healthy volunteers at 3 Tesla.</p> <p>Methods</p> <p>A heart phantom was used to compare the accuracy of 3D and 2D multi-slice MPI in estimating the volume fraction of seven rubber insets which simulated transmural myocardial perfusion defects. Three sets of cross-sectional planes were acquired for 2D multi-slice imaging, where each set was shifted along the partition encoding direction by ± 10 mm. 3D first-pass contrast-enhanced (0.1 mmol/kg Gd-DTPA) MPI was performed in three volunteers with sensitivity encoding for six-fold acceleration. The upslope of the myocardial time-intensity-curve and peak SNR/CNR values were calculated.</p> <p>Results</p> <p>Mean/standard deviation of errors in estimating the volume fraction across the seven defects were -0.44/1.49%, 2.23/2.97%, and 2.59/3.18% in 3D, 2D 4-slice, and 2D 3-slice imaging, respectively. 3D MPI performed in healthy volunteers produced excellent quality images with whole left ventricular (LV) coverage. Peak SNR/CNR was 57.6 ± 22.0/37.5 ± 19.7 over all segments in the first eight slices.</p> <p>Conclusion</p> <p>3D performed better than 2D multi-slice MPI in estimating the size of perfusion defects in phantoms. Highly accelerated 3D MPI at 3T was feasible in volunteers, allowing whole LV coverage with excellent image quality and high SNR/CNR.</p

    Persistent Place-Making in Prehistory: the Creation, Maintenance, and Transformation of an Epipalaeolithic Landscape

    Get PDF
    Most archaeological projects today integrate, at least to some degree, how past people engaged with their surroundings, including both how they strategized resource use, organized technological production, or scheduled movements within a physical environment, as well as how they constructed cosmologies around or created symbolic connections to places in the landscape. However, there are a multitude of ways in which archaeologists approach the creation, maintenance, and transformation of human-landscape interrelationships. This paper explores some of these approaches for reconstructing the Epipalaeolithic (ca. 23,000–11,500&nbsp;years BP) landscape of Southwest Asia, using macro- and microscale geoarchaeological approaches to examine how everyday practices leave traces of human-landscape interactions in northern and eastern Jordan. The case studies presented here demonstrate that these Epipalaeolithic groups engaged in complex and far-reaching social landscapes. Examination of the Early and Middle Epipalaeolithic (EP) highlights that the notion of “Neolithization” is somewhat misleading as many of the features we use to define this transition were already well-established patterns of behavior by the Neolithic. Instead, these features and practices were enacted within a hunter-gatherer world and worldview

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
    corecore