1,726 research outputs found

    The effect of small bowel transplantation on the morphology and physiology of intestinal muscle: A comparison of autografts versus allografts in dogs

    Get PDF
    The effects of acute (AR) and chronic rejection (CR) on intestinal smooth muscle that are responsible for the dysmotility following small bowel transplantation (SBTX) are incompletely understood. Jejunal and ileal specimens from normal control dogs (n=7), and autotransplanted dogs were examined at 7 days (n=6) and 1 (n=7), 3 (n=6), 6 (n=6), and 12 months (n=6). Allotransplanted dogs that developed AR (n=8) and CR (n=5) were examined for gross and microscopic morphology (muscle thickness, the number and size of myocytes, and inflammatory infiltrate), and for contractile and intracellular electrical function in vitro. Auto-SBTX did not alter morphology at any period, but contractile function was impaired at 7 days (73.6%) compared with normal intestine. Acute rejection did not influence myocyte number or size, but was associated with a prominent infiltrate of neutrophils and lymphocytes, and severely impaired contractile function (20.6%) compared with auto-SBTX controls. Acute rejection also significantly inhibited the amplitude of slow waves and of inhibitory junction potentials. Chronic rejection caused thickening of muscularis propria by both hyperplasia (175.5%) and hypertrophy (202.6%) accompanied by moderate inflammatory cell infiltrate compared with auto-SBTX controls. We conclude that the marked inflammatory infiltrate into the muscularis propria indicates that the graft muscle is injured by both acute and chronic rejection; impaired function of intestinal smooth muscle following SBTX results from both rejection and the injury associated with transplantation, and chronic rejection following SBTX is associated with both hyperplasia and hypertrophy of the muscularis propria

    Resummation of heavy jet mass and comparison to LEP data

    Get PDF
    The heavy jet mass distribution in e+e- collisions is computed to next-to-next-to-next-to leading logarithmic (NNNLL) and next-to-next-to leading fixed order accuracy (NNLO). The singular terms predicted from the resummed distribution are confirmed by the fixed order distributions allowing a precise extraction of the unknown soft function coefficients. A number of quantitative and qualitative comparisons of heavy jet mass and the related thrust distribution are made. From fitting to ALEPH data, a value of alpha_s is extracted, alpha_s(m_Z)=0.1220 +/- 0.0031, which is larger than, but not in conflict with, the corresponding value for thrust. A weighted average of the two produces alpha_s(m_Z) = 0.1193 +/- 0.0027, consistent with the world average. A study of the non-perturbative corrections shows that the flat direction observed for thrust between alpha_s and a simple non-perturbative shape parameter is not lifted in combining with heavy jet mass. The Monte Carlo treatment of hadronization gives qualitatively different results for thrust and heavy jet mass, and we conclude that it cannot be trusted to add power corrections to the event shape distributions at this accuracy. Whether a more sophisticated effective field theory approach to power corrections can reconcile the thrust and heavy jet mass distributions remains an open question.Comment: 33 pages, 14 figures. v2 added effect of lower numerical cutoff with improved extraction of the soft function constants; power correction discussion clarified. v3 small typos correcte

    Jet Shapes and Jet Algorithms in SCET

    Get PDF
    Jet shapes are weighted sums over the four-momenta of the constituents of a jet and reveal details of its internal structure, potentially allowing discrimination of its partonic origin. In this work we make predictions for quark and gluon jet shape distributions in N-jet final states in e+e- collisions, defined with a cone or recombination algorithm, where we measure some jet shape observable on a subset of these jets. Using the framework of Soft-Collinear Effective Theory, we prove a factorization theorem for jet shape distributions and demonstrate the consistent renormalization-group running of the functions in the factorization theorem for any number of measured and unmeasured jets, any number of quark and gluon jets, and any angular size R of the jets, as long as R is much smaller than the angular separation between jets. We calculate the jet and soft functions for angularity jet shapes \tau_a to one-loop order (O(alpha_s)) and resum a subset of the large logarithms of \tau_a needed for next-to-leading logarithmic (NLL) accuracy for both cone and kT-type jets. We compare our predictions for the resummed \tau_a distribution of a quark or a gluon jet produced in a 3-jet final state in e+e- annihilation to the output of a Monte Carlo event generator and find that the dependence on a and R is very similar.Comment: 62 pages plus 21 pages of Appendices, 13 figures, uses JHEP3.cls. v2: corrections to finite parts of NLO jet functions, minor changes to plots, clarified discussion of power corrections. v3: Journal version. Introductory sections significantly reorganized for clarity, classification of logarithmic accuracy clarified, results for non-Mercedes-Benz configurations adde

    Double Non-Global Logarithms In-N-Out of Jets

    Full text link
    We derive the leading non-global logarithms (NGLs) of ratios of jet masses m_{1,2} and a jet energy veto \Lambda due to soft gluons splitting into regions in and out of jets. Such NGLs appear in any exclusive jet cross section with multiple jet measurements or with a veto imposed on additional jets. Here, we consider back-to-back jets of radius R produced in e^+e^- collisions, found with a cone or recombination algorithm. The leading NGLs are of the form \alpha_s^2 \ln^2(\Lambda/m_{1,2}) or \alpha_s^2\ln^2(m_1/m_2). Their coefficients depend both on the algorithm and on R. We consider cone, \kt, anti-\kt, and Cambridge-Aachen algorithms. In addition to determining the full algorithmic and R dependence of the leading NGLs, we derive new relations among their coefficients. We also derive to all orders in \alpha_s a factorized form for the soft function S(k_L,k_R,\Lambda) in the cross section \sigma(m_1,m_2,\Lambda) in which dependence on each of the global logs of \mu/k_L, \mu/k_R and \mu/\Lambda determined by the renormalization group are separated from one another and from the non-global logs. The same kind of soft function, its associated non-global structure, and the algorithmic dependence we derive here will also arise in exclusive jet cross sections at hadron colliders, and must be understood and brought under control to achieve precise theoretical predictions.Comment: 19 pages, 10 figures. v2: minor edits, additional discussion in Introduction. v3: version published in JHE

    The porin and the permeating antibiotic: A selective diffusion barrier in gram-negative bacteria

    Get PDF
    Gram-negative bacteria are responsible for a large proportion of antibiotic resistant bacterial diseases. These bacteria have a complex cell envelope that comprises an outer membrane and an inner membrane that delimit the periplasm. The outer membrane contains various protein channels, called porins, which are involved in the influx of various compounds, including several classes of antibiotics. Bacterial adaptation to reduce influx through porins is an increasing problem worldwide that contributes, together with efflux systems, to the emergence and dissemination of antibiotic resistance. An exciting challenge is to decipher the genetic and molecular basis of membrane impermeability as a bacterial resistance mechanism. This Review outlines the bacterial response towards antibiotic stress on altered membrane permeability and discusses recent advances in molecular approaches that are improving our knowledge of the physico-chemical parameters that govern the translocation of antibiotics through porin channel

    An Endogenous Foamy-like Viral Element in the Coelacanth Genome

    Get PDF
    Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts' genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate ‘coelacanth endogenous foamy-like virus’ (CoeEFV), within the genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology

    Search for time-dependent B0s - B0s-bar oscillations using a vertex charge dipole technique

    Get PDF
    We report a search for B0s - B0s-bar oscillations using a sample of 400,000 hadronic Z0 decays collected by the SLD experiment. The analysis takes advantage of the electron beam polarization as well as information from the hemisphere opposite that of the reconstructed B decay to tag the B production flavor. The excellent resolution provided by the pixel CCD vertex detector is exploited to cleanly reconstruct both B and cascade D decay vertices, and tag the B decay flavor from the charge difference between them. We exclude the following values of the B0s - B0s-bar oscillation frequency: Delta m_s < 4.9 ps-1 and 7.9 < Delta m_s < 10.3 ps-1 at the 95% confidence level.Comment: 18 pages, 3 figures, replaced by version accepted for publication in Phys.Rev.D; results differ slightly from first versio

    Metastatic potential of an aneurysmal bone cyst

    Get PDF
    Aneurysmal bone cysts (ABCs) are benign bone tumors consisting of blood-filled cavities lined by connective tissue septa. Recently, the hypothesis that ABCs are lesions reactive to local hemodynamics has been challenged after the discovery of specific recurrent chromosomal abnormalities. Multiple cases of malignant transformation of ABC into (osteo)sarcoma have been described, as well as a number of cases of telangiectatic osteosarcoma which had been misdiagnosed as ABC. We herewith document a case of a pelvic ABC metastatic to the lung, liver, and kidneys. Diagnosis was confirmed by the presence of a break in the USP6 gene, which is pathognomonic for ABC, in a pulmonary metastasis of our patient. Sarcomatous transformation as an explanation for this behavior was ruled out by demonstrating diploid DNA content in both the pulmonary lesion and the primary tumor

    Long-interval intracortical inhibition as biomarker for epilepsy: a transcranial magnetic stimulation study

    Get PDF
    Cortical excitability, as measured by transcranial magnetic stimulation combined with electromyography, is a potential biomarker for the diagnosis and follow-up of epilepsy. We report on long-interval intracortical inhibition data measured in four different centres in healthy controls (n = 95), subjects with refractory genetic generalized epilepsy (n = 40) and with refractory focal epilepsy (n = 69). Long-interval intracortical inhibition was measured by applying two supra-threshold stimuli with an interstimulus interval of 50, 100, 150, 200 and 250 ms and calculating the ratio between the response to the second (test stimulus) and to the first (conditioning stimulus). In all subjects, the median response ratio showed inhibition at all interstimulus intervals. Using a mixed linear-effects model, we compared the long-interval intracortical inhibition response ratios between the different subject types. We conducted two analyses; one including data from the four centres and one excluding data from Centre 2, as the methods in this centre differed from the others. In the first analysis, we found no differences in long-interval intracortical inhibition between the different subject types. In all subjects, the response ratios at interstimulus intervals 100 and 150 ms showed significantly more inhibition than the response ratios at 50, 200 and 250 ms. Our second analysis showed a significant interaction between interstimulus interval and subject type (P = 0.0003). Post hoc testing showed significant differences between controls and refractory focal epilepsy at interstimulus intervals of 100 ms (P = 0.02) and 200 ms (P = 0.04). There were no significant differences between controls and refractory generalized epilepsy groups or between the refractory generalized and focal epilepsy groups. Our results do not support the body of previous work that suggests that long-interval intracortical inhibition is significantly reduced in refractory focal and genetic generalized epilepsy. Results from the second analysis are even in sharper contrast with previous work, showing inhibition in refractory focal epilepsy at 200 ms instead of facilitation previously reported. Methodological differences, especially shorter intervals between the pulse pairs, may have contributed to our inability to reproduce previous findings. Based on our results, we suggest that long-interval intracortical inhibition as measured by transcranial magnetic stimulation and electromyography is unlikely to have clinical use as a biomarker of epilepsy
    • …
    corecore