9 research outputs found

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

    Get PDF
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ÂŻ

    èźČ鹘1ïŒšæŠ—èĄ€ć°æżè—„ç‰©

    No full text
    II Clinical Pharmacy - Therapeutic Debate 1 (èŻæ•ˆæČ»ç–—èŸ©èźșçŽŻèŠ‚ 1

    Topic 2: Early intensive insulin therapy in Type 2 Diabetes: Killer or Saviour?

    No full text
    Therapeutic Debate I (èŻæ•ˆæČ»ç–—èŸ©èźșçŽŻèŠ‚ I

    Measurement of b jet shapes in proton-proton collisions at s=5.02 TeV

    No full text
    We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb(-1). To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the pythia and herwig++ event generators

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution.

    Get PDF
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ÂŻ

    Measurement of differential cross sections for inclusive isolated-photon and photon plus jet production in proton-proton collisions at root s=13TeV

    No full text
    corecore