168 research outputs found

    In Vitro Model of Vascularized Bone: Synergizing Vascular Development and Osteogenesis

    Get PDF
    Tissue engineering provides unique opportunities for regenerating diseased or damaged tissues using cells obtained from tissue biopsies. Tissue engineered grafts can also be used as high fidelity models to probe cellular and molecular interactions underlying developmental processes. In this study, we co-cultured human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (MSCs) under various environmental conditions to elicit synergistic interactions leading to the colocalized development of capillary-like and bone-like tissues. Cells were encapsulated at the 1∶1 ratio in fibrin gel to screen compositions of endothelial growth medium (EGM) and osteogenic medium (OM). It was determined that, to form both tissues, co-cultures should first be supplied with EGM followed by a 1∶1 cocktail of the two media types containing bone morphogenetic protein-2. Subsequent studies of HUVECs and MSCs cultured in decellularized, trabecular bone scaffolds for 6 weeks assessed the effects on tissue construct of both temporal variations in growth-factor availability and addition of fresh cells. The resulting grafts were implanted subcutaneously into nude mice to determine the phenotype stability and functionality of engineered vessels. Two important findings resulted from these studies: (i) vascular development needs to be induced prior to osteogenesis, and (ii) the addition of additional hMSCs at the osteogenic induction stage improves both tissue outcomes, as shown by increased bone volume fraction, osteoid deposition, close proximity of bone proteins to vascular networks, and anastomosis of vascular networks with the host vasculature. Interestingly, these observations compare well with what has been described for native development. We propose that our cultivation system can mimic various aspects of endothelial cell – osteogenic precursor interactions in vivo, and could find utility as a model for studies of heterotypic cellular interactions that couple blood vessel formation with osteogenesis

    High-Resolution Melting Genotyping of Enterococcus faecium Based on Multilocus Sequence Typing Derived Single Nucleotide Polymorphisms

    Get PDF
    We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 “melting types” (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure

    Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction

    Get PDF
    Human mesenchymal stem cells (hMSCs) can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1–8 µg/mL) negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr). Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical

    The effect of bone marrow microenvironment on the functional properties of the therapeutic bone marrow-derived cells in patients with acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of acute myocardial infarction with stem cell transplantation has achieved beneficial effects in many clinical trials. The bone marrow microenvironment of ST-elevation myocardial infarction (STEMI) patients has never been studied even though myocardial infarction is known to cause an imbalance in the acid-base status of these patients. The aim of this study was to assess if the blood gas levels in the bone marrow of STEMI patients affect the characteristics of the bone marrow cells (BMCs) and, furthermore, do they influence the change in cardiac function after autologous BMC transplantation. The arterial, venous and bone marrow blood gas concentrations were also compared.</p> <p>Methods</p> <p>Blood gas analysis of the bone marrow aspirate and peripheral blood was performed for 27 STEMI patients receiving autologous stem cell therapy after percutaneous coronary intervention. Cells from the bone marrow aspirate were further cultured and the bone marrow mesenchymal stem cell (MSC) proliferation rate was determined by MTT assay and the MSC osteogenic differentiation capacity by alkaline phosphatase (ALP) activity assay. All the patients underwent a 2D-echocardiography at baseline and 4 months after STEMI.</p> <p>Results</p> <p>As expected, the levels of pO<sub>2</sub>, pCO<sub>2</sub>, base excess and HCO<sub>3 </sub>were similar in venous blood and bone marrow. Surprisingly, bone marrow showed significantly lower pH and Na<sup>+ </sup>and elevated K<sup>+ </sup>levels compared to arterial and venous blood. There was a positive correlation between the bone marrow pCO<sub>2 </sub>and HCO<sub>3 </sub>levels and MSC osteogenic differentiation capacity. In contrast, bone marrow pCO<sub>2 </sub>and HCO<sub>3 </sub>levels displayed a negative correlation with the proliferation rate of MSCs. Patients with the HCO<sub>3 </sub>level below the median value exhibited a more marked change in LVEF after BMC treatment than patients with HCO<sub>3 </sub>level above the median (11.13 ± 8.07% vs. 2.67 ± 11.89%, P = 0.014).</p> <p>Conclusions</p> <p>Low bone marrow pCO<sub>2 </sub>and HCO<sub>3 </sub>levels may represent the optimal environment for BMCs in terms of their efficacy in autologous stem cell therapy in STEMI patients.</p

    O2 Level Controls Hematopoietic Circulating Progenitor Cells Differentiation into Endothelial or Smooth Muscle Cells

    Get PDF
    BACKGROUND:Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying the oxygen content, progenitor cells can be differentiated either in mature endothelial cells (ECs) or contractile smooth muscle cells (SMCs) while keeping exactly the same culture medium. METHODOLOGY/PRINCIPAL FINDINGS:Mononuclear cells were isolated by density gradient were cultivated under hypoxic (5% O2) or normoxic (21% O2) environment. Differentiated cells characterization was performed by confocal microscopy examination and flow cytometry analyses. The phenotype stability over a longer time period was also performed. The morphological examination of the confluent obtained cells after several weeks (between 2 and 4 weeks) showed two distinct morphologies: cobblestone shape in normoxia and a spindle like shape in hypoxia. The cell characterization showed that cobblestone cells were positive to ECs markers while spindle like shape cells were positive to contractile SMCs markers. Moreover, after several further amplification (until 3(rd) passage) in hypoxic or normoxic conditions of the previously differentiated SMC, immunofluorescence studies showed that more than 80% cells continued to express SMCs markers whatever the cell environmental culture conditions with a higher contractile markers expression compared to control (aorta SMCs) signature of phenotype stability. CONCLUSION/SIGNIFICANCE:We demonstrate in this paper that in vitro culture of peripheral blood mononuclear cells with specific angiogenic growth factors under hypoxic conditions leads to SMCs differentiation into a contractile phenotype, signature of their physiological state. Moreover after amplification, the differentiated SMC did not reverse and keep their contractile phenotype after the 3rd passage performed under hypoxic and normoxic conditions. These aspects are of the highest importance for tissue engineering strategies. These results highlight also the determinant role of the tissue environment in the differentiation process of vascular progenitor cells

    Reconstruction of Endometrium from Human Endometrial Side Population Cell Lines

    Get PDF
    Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC) population recently identified by several groups using the side population (SP) technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP) cell lines (ICE 1–7): four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12–15 passages (20 weeks) and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3) and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN). Phenotype analysis corroborated their epithelial (CD9+) or stromal (vimentin+) cell origin and mesenchymal (CD90+, CD73+ and CD45−) attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ERα) or progesterone receptor (PR). The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis

    The Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury

    Get PDF
    In vitro hypoxic preconditioning (HP) of mesenchymal stem cells (MSCs) could ameliorate their viability and tissue repair capabilities after transplantation into the injured tissue through yet undefined mechanisms. There is also experimental evidence that HP enhances the expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, which are involved in migration and survival of MSCs in vitro, but little is known about their role in the in vivo therapeutic effectiveness of MSCs in renal ischemia/reperfusion (I/R) injury. Here, we evaluated the role of SDF-1-CXCR4/CXCR7 pathway in regulating chemotaxis, viability and paracrine actions of HP-MSCs in vitro and in vivo. Compared with normoxic preconditioning (NP), HP not only improved MSC chemotaxis and viability but also stimulated secretion of proangiogenic and mitogenic factors. Importantly, both CXCR4 and CXCR7 were required for the production of paracrine factors by HP-MSCs though the former was only responsible for chemotaxis while the latter was for viability. SDF-1α expression was upregulated in postischemic kidneys. After 24 h systemical administration following I/R, HP-MSCs but not NP-MSCs were selectively recruited to ischemic kidneys and this improved recruitment was abolished by neutralization of CXCR4, but not CXCR7. Furthermore, the increased recruitment of HP-MSCs was associated with enhanced functional recovery, accelerated mitogenic response, and reduced apoptotic cell death. In addition, neutralization of either CXCR4 or CXCR7 impaired the improved therapeutic potential of HP-MSCs. These results advance our knowledge about SDF-1-CXCR4/CXCR7 axis as an attractive target pathway for improving the beneficial effects of MSC-based therapies for renal I/R

    Selective and Irreversible Inhibitors of Aphid Acetylcholinesterases: Steps Toward Human-Safe Insecticides

    Get PDF
    Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems

    Noise-Driven Stem Cell and Progenitor Population Dynamics

    Get PDF
    BACKGROUND: The balance between maintenance of the stem cell state and terminal differentiation is influenced by the cellular environment. The switching between these states has long been understood as a transition between attractor states of a molecular network. Herein, stochastic fluctuations are either suppressed or can trigger the transition, but they do not actually determine the attractor states. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel mathematical concept in which stem cell and progenitor population dynamics are described as a probabilistic process that arises from cell proliferation and small fluctuations in the state of differentiation. These state fluctuations reflect random transitions between different activation patterns of the underlying regulatory network. Importantly, the associated noise amplitudes are state-dependent and set by the environment. Their variability determines the attractor states, and thus actually governs population dynamics. This model quantitatively reproduces the observed dynamics of differentiation and dedifferentiation in promyelocytic precursor cells. CONCLUSIONS/SIGNIFICANCE: Consequently, state-specific noise modulation by external signals can be instrumental in controlling stem cell and progenitor population dynamics. We propose follow-up experiments for quantifying the imprinting influence of the environment on cellular noise regulation.Engineering and Applied SciencesOther Research Uni

    Fluids and barriers of the CNS: a historical viewpoint

    Get PDF
    Tracing the exact origins of modern science can be a difficult but rewarding pursuit. It is possible for the astute reader to follow the background of any subject through the many important surviving texts from the classical and ancient world. While empirical investigations have been described by many since the time of Aristotle and scientific methods have been employed since the Middle Ages, the beginnings of modern science are generally accepted to have originated during the 'scientific revolution' of the 16th and 17th centuries in Europe. The scientific method is so fundamental to modern science that some philosophers consider earlier investigations as 'pre-science'. Notwithstanding this, the insight that can be gained from the study of the beginnings of a subject can prove important in the understanding of work more recently completed. As this journal undergoes an expansion in focus and nomenclature from cerebrospinal fluid (CSF) into all barriers of the central nervous system (CNS), this review traces the history of both the blood-CSF and blood-brain barriers from as early as it was possible to find references, to the time when modern concepts were established at the beginning of the 20th century
    corecore