28 research outputs found

    Telomerase and breast cancer

    Get PDF
    Current therapies for breast cancer include treatments that are toxic and often result in drug resistance. Telomerase, a cellular reverse transcriptase that maintains the ends of chromosomes (telomeres), is activated in the vast majority of breast cancers (over 90% of breast carcinomas) but not in normal adjacent tissues. Telomerase is thus an attractive target for both diagnosis and therapy because of its distinct pattern of expression. We address the use of telomerase in the diagnostics of breast pathology, as well as the use of telomerase inhibitors in the treatment and prevention of breast cancer

    Counting Mycobacteria in Infected Human Cells and Mouse Tissue: A Comparison between qPCR and CFU

    Get PDF
    Due to the slow growth rate and pathogenicity of mycobacteria, enumeration by traditional reference methods like colony counting is notoriously time-consuming, inconvenient and biohazardous. Thus, novel methods that rapidly and reliably quantify mycobacteria are warranted in experimental models to facilitate basic research, development of vaccines and anti-mycobacterial drugs. In this study we have developed quantitative polymerase chain reaction (qPCR) assays for simultaneous quantification of mycobacterial and host DNA in infected human macrophage cultures and in mouse tissues. The qPCR method cannot discriminate live from dead bacteria and found a 10- to 100-fold excess of mycobacterial genomes, relative to colony formation. However, good linear correlations were observed between viable colony counts and qPCR results from infected macrophage cultures (Pearson correlation coefficient [r] for M. tuberculosis = 0.82; M. a. avium = 0.95; M. a. paratuberculosis = 0.91). Regression models that predict colony counts from qPCR data in infected macrophages were validated empirically and showed a high degree of agreement with observed counts. Similar correlation results were also obtained in liver and spleen homogenates of M. a. avium infected mice, although the correlations were distinct for the early phase (<day 9 post-infection) and later phase (≥day 20 post-infection) liver r = 0.94 and r = 0.91; spleen r = 0.91 and r = 0.87, respectively. Interestingly, in the mouse model the number of live bacteria as determined by colony counts constituted a much higher proportion of the total genomic qPCR count in the early phase (geometric mean ratio of 0.37 and 0.34 in spleen and liver, respectively), as compared to later phase of infection (geometric mean ratio of 0.01 in both spleen and liver). Overall, qPCR methods offer advantages in biosafety, time-saving, assay range and reproducibility compared to colony counting. Additionally, the duplex format allows enumeration of bacteria per host cell, an advantage in experiments where variable cell death can give misleading colony counts

    Comparison of three rapid and easy bacterial DNA extraction methods for use with quantitative real-time PCR

    Get PDF
    The development of fast and easy on-site molecular detection and quantification methods for hazardous microbes on solid surfaces is desirable for several applications where specialised laboratory facilities are absent. The quantification of bacterial contamination necessitates the assessment of the efficiency of the used methodology as a whole, including the preceding steps of sampling and sample processing. We used quantitative real-time polymerase chain reaction (qrtPCR) for Escherichia coli and Staphylococcus aureus to measure the recovery of DNA from defined numbers of bacterial cells that were subjected to three different DNA extraction methods: the QIAamp® DNA Mini Kit, Reischl et al.’s method and FTA® Elute. FTA® Elute significantly showed the highest median DNA extraction efficiency of 76.9% for E. coli and 108.9% for S. aureus. The Reischl et al. method and QIAamp® DNA Mini Kit inhibited the E. coli qrtPCR assay with a 10-fold decrease of detectable DNA. None of the methods inhibited the S. aureus qrtPCR assay. The FTA® Elute applicability was demonstrated with swab samples taken from the International Space Station (ISS) interior. Overall, the FTA® Elute method was found to be the most suitable to selected criteria in terms of rapidity, easiness of use, DNA extraction efficiency, toxicity, and transport and storage conditions

    Pathogen quantitation in complex matrices : a multi-operator comparison of DNA extraction methods with a novel assessment of PCR inhibition

    Get PDF
    Background: Mycobacterium bovis is the aetiological agent of bovine tuberculosis (bTB), an important recrudescent zoonosis, significantly increasing in British herds in recent years. Wildlife reservoirs have been identified for this disease but the mode of transmission to cattle remains unclear. There is evidence that viable M. bovis cells can survive in soil and faeces for over a year. Methodology/Principal Findings: We report a multi-operator blinded trial for a rigorous comparison of five DNA extraction methods from a variety of soil and faecal samples to assess recovery of M. bovis via real-time PCR detection. The methods included four commercial kits: the QIAamp Stool Mini kit with a pretreatment step, the FastDNA® Spin kit, the UltraCleanTM and PowerSoilTM soil kits and a published manual method based on phenol:chloroform purification, termed Griffiths. M. bovis BCG Pasteur spiked samples were extracted by four operators and evaluated using a specific real-time PCR assay. A novel inhibition control assay was used alongside spectrophotometric ratios to monitor the level of inhibitory compounds affecting PCR, DNA yield, and purity. There were statistically significant differences in M. bovis detection between methods of extraction and types of environmental samples; no significant differences were observed between operators. Processing times and costs were also evaluated. To improve M. bovis detection further, the two best performing methods, FastDNA® Spin kit and Griffiths, were optimised and the ABI TaqMan environmental PCR Master mix was adopted, leading to improved sensitivities. Conclusions: M. bovis was successfully detected in all environmental samples; DNA extraction using FastDNA® Spin kit was the most sensitive method with highest recoveries from all soil types tested. For troublesome faecal samples, we have used and recommend an improved assay based on a reduced volume, resulting in detection limits of 4.25 x 105 cells g-1 using Griffiths and 4.25 x 106 cells g-1 using FastDNA® Spin kit

    Use of loop-mediated isothermal amplification of DNA for the rapid detection of Mycobacterium tuberculosis in clinical specimens

    No full text
    Loop-mediated isothermal amplification (LAMP) is a recently developed molecular method that has been successfully implemented in the detection of Mycobacterium tuberculosis in clinical specimens. LAMP has several advantages, such as rapidity, high sensitivity, ease of application and cost-effectiveness. As a result, it is anticipated that its use for the detection of M. tuberculosis is likely to become widespread, especially in low-resource countries. The present review aimed to present this method and all of the available information on its implementation in the detection of M. tuberculosis in clinical specimens

    Performance of indirect immunofluorescence assay, immunochromatography assay and reverse transcription-polymerase chain reaction for detecting human respiratory syncytial virus in nasopharyngeal aspirate samples

    No full text
    Comparison of the use of indirect immunofluorescence assay (IFA), immunochromatography assay (ICA-BD) and reverse transcription-polymerase chain reaction (RT-PCR) for detecting human respiratory syncytial virus (HRSV) in 306 nasopharyngeal aspirates samples (NPA) was performed in order to assess their analytical performance. By comparing the results obtained using ICA-BD with those using IFA, we found relative indices of 85.0% for sensitivity and 91.2% for specificity, and the positive (PPV) and negative (NPV) predictive values were 85.0% and 91.2%, respectively. The relative indices for sensitivity and specificity as well as the PPV and NPV for RT-PCR were 98.0%, 89.0%, 84.0% and 99.0%, respectively, when compared to the results of IFA. In addition, comparison of the results of ICA-BD and those of RT-PCR yielded relative indices of 79.5% for sensitivity and 95.4% for specificity, as well as PPV and NPV of 92.9% and 86.0%, respectively. Although RT-PCR has shown the best performance, the substantial agreement between the ICA-BD and IFA results suggests that ICA-BD, also in addition to being a rapid and facile assay, could be suitable as an alternative diagnostic screening for HRSV infection in children
    corecore