1,081 research outputs found

    Efficacy of Wnt-1 monoclonal antibody in sarcoma cells

    Get PDF
    BACKGROUND: Sarcomas are one of the most refractory diseases among malignant tumors. More effective therapies based on an increased understanding of the molecular biology of sarcomas are needed as current forms of therapy remain inadequate. Recently, it has been reported that Wnt-1/β-catenin signaling inhibits apoptosis in several cancers. In this study, we investigated the efficacy of a monoclonal anti-Wnt-1 antibody in sarcoma cells. METHODS: We treated cell lines A-204, SJSA-1, and fresh primary cultures of lung metastasis of sarcoma with a monoclonal anti-Wnt-1 antibody. Wnt-1 siRNA treatment was carried out in A-204. We assessed cell death using Crystal Violet staining. Apoptosis induction was estimated by flow cytometry analysis (Annexin V and PI staining). Cell signaling changes were determined by western blotting analysis. RESULTS: We detected Wnt-1 expression in all tissue samples and cell lines. Significant apoptosis induction was found in monoclonal anti-Wnt-1 antibody treated cells compared to control monoclonal antibody treated cells (p < 0.02). Similarly, we observed increased apoptosis in Wnt-1 siRNA treated cells. Blockade of Wnt-1 signaling in both experiments was confirmed by analyzing intracellular levels of Dishevelled-3 and of cytosolic β-catenin. Furthermore, the monoclonal anti-Wnt-1 antibody also induced cell death in fresh primary cultures of metastatic sarcoma in which Wnt-1 signaling was active. CONCLUSION: Our results indicate that Wnt-1 blockade by either monoclonal antibody or siRNA induces cell death in sarcoma cells. These data suggest that Wnt-1 may be a novel therapeutic target for the treatment of a subset of sarcoma cells in which Wnt-1/β-catenin signaling is active

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters

    Skeletal growth in class II malocclusion from childhood to adolescence: does the profile straighten?

    Get PDF
    BACKGROUND There is relatively little appreciation of the changes in maxillary-mandibular relationships occurring during adolescence among subjects with normal and increased overjet. The aim of this study was to assess differences in changes in maxillo-mandibular relationships during the adolescent growth period based on the presence of a normal ( 4 mm) overjet in childhood. Our hypothesis was that there is no difference in the change of the A point, nasion, B point (ANB) angle during growth between these two overjet groups. Lateral cephalograms were obtained from 65 subjects taken from the American Association of Orthodontists Foundation (AAOF) Craniofacial Growth Legacy Collections Project. Cephalograms were obtained at ages 7-10 (T0) and 14-17 (T1) with allocation into two groups based on baseline overjet (> 4 mm: group 1, 2-4 mm: group 2). Random effects linear regression was used to account for multiple within -patient measurements with dependent variables including antero-posterior skeletal pattern (based on sella, nasion, A point (SNA); sella, nasion, B point (SNB); and ANB angles). RESULTS We included a similar number of males (n = 34; 52.3%) and females (n = 31; 47.7%). The mean ANB was higher at baseline in group 1 (5.42, SD 2.16°) than in group 2 (3.08, SD 1.91°). The hypothesis was rejected as the ANB angle reduced by 1.92° more in the larger overjet group with the association being statistically significant after accounting for age and gender (P  4 mm overjet group compared to the 2-4 mm group (0.857°, P = 0.271; 95% CI - 0.669 to 2.383). The SNB angle increased by 1.15° more in the higher overjet group but there was only weak evidence of an association (P = 0.086; 95% CI - 2.464 to 0.164). CONCLUSIONS A slight straightening of the facial profile was observed in both groups with a statistically significant greater reduction in ANB arising in the group with larger baseline overjet. This translated into a marginal reduction in the overjet in this group

    Timing Cellular Decision Making Under Noise via Cell–Cell Communication

    Get PDF
    Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell–cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words, the summation performed by the cell population would average out the noise and reduce its detrimental impact

    Relationship between H.Pylori infection and clinicopathological features and prognosis of gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aimed to assess the relationship between H.Pylori and the clinicopathological features and prognosis of gastric cancer by quantitative detection of H.Pylori.</p> <p>Methods</p> <p>157 patients were enrolled, all patients had a record of clinicopathological parameters. Specimens including the tumor and non-neoplastic were detected for H.Pylori by Real-Time PCR and analyzed clinical data retrospectively. Variables independently affecting prognosis were investigated by means of multivariate analysis using the Cox proportional hazards model.</p> <p>Results</p> <p>H.Pylori infection was greater in non-neoplastic tissue than the tumor tissue (p < 0.05), H.Pylori infection and its copies were related to the tumor site and N staging (p < 0.05). Overall survival (OS) in all 157 patients has no correlation with the H.Pylori infection status (p = 0.715). As to the patients who underwent a curative surgery, relapse-free survival (RFS) has no correlation with the H.Pylori infection status (p = 0.639). Among the H.Pylori positive patients, OS and RFS of those with higher copies were longer than in patients with low copies, but there was no significant statistical difference.</p> <p>Conclusions</p> <p>H.Pylori infection status and its copies were related to N staging. The OS and RFS in patients with positive H.Pylori status has no significant difference from the patients with negative H.Pylori status.</p

    Cross-platform expression profiling demonstrates that SV40 small tumor antigen activates Notch, Hedgehog, and Wnt signaling in human cells

    Get PDF
    BACKGROUND: We previously analyzed human embryonic kidney (HEK) cell lines for the effects that simian virus 40 (SV40) small tumor antigen (ST) has on gene expression using Affymetrix U133 GeneChips. To cross-validate and extend our initial findings, we sought to compare the expression profiles of these cell lines using an alternative microarray platform. METHODS: We have analyzed matched cell lines with and without expression of SV40 ST using an Applied Biosystems (AB) microarray platform that uses single 60-mer oligonucleotides and single-color quantitative chemiluminescence for detection. RESULTS: While we were able to previously identify only 456 genes affected by ST with the Affymetrix platform, we identified 1927 individual genes with the AB platform. Additional technical replicates increased the number of identified genes to 3478 genes and confirmed the changes in 278 (61%) of our original set of 456 genes. Among the 3200 genes newly identified as affected by SV40 ST, we confirmed 20 by QRTPCR including several components of the Wnt, Notch, and Hedgehog signaling pathways, consistent with SV40 ST activation of these developmental pathways. While inhibitors of Notch activation had no effect on cell survival, cyclopamine had a potent killing effect on cells expressing SV40 ST. CONCLUSIONS: These data show that SV40 ST expression alters cell survival pathways to sensitize cells to the killing effect of Hedgehog pathway inhibitors
    corecore