1,323 research outputs found
Teaching and learning reflection in MPA programs: towards a strategy
__Abstract__
Reflection is an essential ingredient of academic education in PublicAdministration, both for
an academic and a professional career. Making a distinction between reflectivity and
reflexivity we identify 30 foci of reflection. The main question of the article is how these
forms of reflection can be taught and learned in PA programs, especially in post-experience
PAprograms. To answer this question,westudied de programand interviewed the teaching
staff op the post-experienceMPA program at Erasmus University in Rotterdamto describe
what is actually done in the to teach students reflection competences and to identify success
and limitations of these efforts. We present our findings and describe how we, in consultation
with the teaching staff, developed a number of feasible options for improvement.
We discuss these options and present a strategy to actually get these implemented
Laser cooling of a diatomic molecule
It has been roughly three decades since laser cooling techniques produced
ultracold atoms, leading to rapid advances in a vast array of fields.
Unfortunately laser cooling has not yet been extended to molecules because of
their complex internal structure. However, this complexity makes molecules
potentially useful for many applications. For example, heteronuclear molecules
possess permanent electric dipole moments which lead to long-range, tunable,
anisotropic dipole-dipole interactions. The combination of the dipole-dipole
interaction and the precise control over molecular degrees of freedom possible
at ultracold temperatures make ultracold molecules attractive candidates for
use in quantum simulation of condensed matter systems and quantum computation.
Also ultracold molecules may provide unique opportunities for studying chemical
dynamics and for tests of fundamental symmetries. Here we experimentally
demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using
an optical cycling scheme requiring only three lasers, we have observed both
Sisyphus and Doppler cooling forces which have substantially reduced the
transverse temperature of a SrF molecular beam. Currently the only technique
for producing ultracold molecules is by binding together ultracold alkali atoms
through Feshbach resonance or photoassociation. By contrast, different proposed
applications for ultracold molecules require a variety of molecular
energy-level structures. Our method provides a new route to ultracold
temperatures for molecules. In particular it bridges the gap between ultracold
temperatures and the ~1 K temperatures attainable with directly cooled
molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams).
Ultimately our technique should enable the production of large samples of
molecules at ultracold temperatures for species that are chemically distinct
from bialkalis.Comment: 10 pages, 7 figure
Stability of Spatial Optical Solitons
We present a brief overview of the basic concepts of the soliton stability
theory and discuss some characteristic examples of the instability-induced
soliton dynamics, in application to spatial optical solitons described by the
NLS-type nonlinear models and their generalizations. In particular, we
demonstrate that the soliton internal modes are responsible for the appearance
of the soliton instability, and outline an analytical approach based on a
multi-scale asymptotic technique that allows to analyze the soliton dynamics
near the marginal stability point. We also discuss some results of the rigorous
linear stability analysis of fundamental solitary waves and nonlinear impurity
modes. Finally, we demonstrate that multi-hump vector solitary waves may become
stable in some nonlinear models, and discuss the examples of stable
(1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons
in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons",
Eds. W. Torruellas and S. Trillo (Springer, New York
"Meaning" as a sociological concept: A review of the modeling, mapping, and simulation of the communication of knowledge and meaning
The development of discursive knowledge presumes the communication of meaning
as analytically different from the communication of information. Knowledge can
then be considered as a meaning which makes a difference. Whereas the
communication of information is studied in the information sciences and
scientometrics, the communication of meaning has been central to Luhmann's
attempts to make the theory of autopoiesis relevant for sociology. Analytical
techniques such as semantic maps and the simulation of anticipatory systems
enable us to operationalize the distinctions which Luhmann proposed as relevant
to the elaboration of Husserl's "horizons of meaning" in empirical research:
interactions among communications, the organization of meaning in
instantiations, and the self-organization of interhuman communication in terms
of symbolically generalized media such as truth, love, and power. Horizons of
meaning, however, remain uncertain orders of expectations, and one should
caution against reification from the meta-biological perspective of systems
theory
Understanding the links between hearing impairment and dementia : development and validation of the social and emotional impact of hearing impairment (SEI-HI) questionnaire
Background
The links between hearing impairment (HI) and dementia have been well documented, but factors mediating this relationship remain unknown. Major consequences of HI are social and emotional dysfunction, and as the risk of dementia increases linearly with the severity of HI, it is plausible that socio-emotional difficulties may play a role in this association.
Objective
The aim of this study was to develop and validate a tool to analyse levels of hearing-related disability, to investigate ultimately whether subjective disability contributes to risk of cognitive impairment compared with hearing thresholds alone.
Methods
Development and validation of the questionnaire, the Social and Emotional Impact of Hearing Impairment (SEI-HI), was conducted in four phases: (1) content; (2) scoring and outcomes; (3) validation; (4) feasibility in a sample of people with cognitive impairment.
Results
Considerable evidence was found for the internal and external reliability of the tool with high construct validity, concurrent validity and test-retest values of the SEI-HI questionnaire. A feasibility check on 31 patients with mild cognitive impairment or dementia showed the SEI-HI questionnaire was easy to administer and well-received.
Conclusion
The SEI-HI questionnaire is a relevant instrument to assess hearing-related disability which can be used in people with cognitive decline to assess further impact on risk of developing dementia
Sociological and Communication-Theoretical Perspectives on the Commercialization of the Sciences
Both self-organization and organization are important for the further
development of the sciences: the two dynamics condition and enable each other.
Commercial and public considerations can interact and "interpenetrate" in
historical organization; different codes of communication are then
"recombined." However, self-organization in the symbolically generalized codes
of communication can be expected to operate at the global level. The Triple
Helix model allows for both a neo-institutional appreciation in terms of
historical networks of university-industry-government relations and a
neo-evolutionary interpretation in terms of three functions: (i) novelty
production, (i) wealth generation, and (iii) political control. Using this
model, one can appreciate both subdynamics. The mutual information in three
dimensions enables us to measure the trade-off between organization and
self-organization as a possible synergy. The question of optimization between
commercial and public interests in the different sciences can thus be made
empirical.Comment: Science & Education (forthcoming
Experiences in the development of a data management system for genomics
GMQL is a high-level query language for genomics, which operates on datasets described through GDM, a unifying data model for processed data formats. They are ingredients for the integration of processed genomic datasets, i.e. of signals produced by the genome after sequencing and long data extraction pipelines. While most of the processing load of today’s genomic platforms is due to data extraction pipelines, we anticipate soon a shift of attention towards processed datasets, as such data are being collected by large consortia and are becoming increasingly available. In our view, biology and personalized medicine will increasingly rely on data extraction and analysis methods for inferring new knowledge from existing heterogeneous repositories of processed datasets, typically augmented with the results of experimental data targeting individuals or small populations. While today’s big data are raw reads of the sequencing machines, tomorrow’s big data will also include billions or trillions of genomic regions, each featuring specific values depending on the processing conditions. Coherently, GMQL is a high-level, declarative language inspired by big data management, and its execution engines include classic cloud-based systems, from Pig to Flink to SciDB to Spark. In this paper, we discuss how the GMQL execution environment has been developed, by going through a major version change that marked a complete system redesign; we also discuss our experiences in comparatively evaluating the four platforms
photoproduction on the proton for photon energies from 0.725 to 2.875 GeV
Differential cross sections for the reaction have been
measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged
photon beam with energies from 0.725 to 2.875 GeV. Where available, the results
obtained here compare well with previously published results for the reaction.
Agreement with the SAID and MAID analyses is found below 1 GeV. The present set
of cross sections has been incorporated into the SAID database, and exploratory
fits have been made up to 2.7 GeV. Resonance couplings have been extracted and
compared to previous determinations. With the addition of these cross sections
to the world data set, significant changes have occurred in the high-energy
behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure
Bridgehead Modifications of Englerin A Reduce TRPC4 Activity and Intravenous Toxicity but not Cell Growth Inhibition
Modifications at the bridgehead position of englerin A were made to explore the effects of variation at this site on the molecule for biological activity, as judged by the NCI 60 screen, in which englerin A is highly potent and selective for renal cancer cells. Replacement of the isopropyl group by other, larger substituents yielded compounds which displayed excellent selectivity and potency comparable to the natural product. Selected compounds were also evaluated for their effect on the ion channel TRPC4 as well as for intravenous toxicity in mice, and these had lower potency in both assays compared to englerin A
- …