43 research outputs found

    The FERM and PDZ Domain-Containing Protein Tyrosine Phosphatases, PTPN4 and PTPN3, Are Both Dispensable for T Cell Receptor Signal Transduction

    Get PDF
    PTPN3 and PTPN4 are two closely-related non-receptor protein tyrosine phosphatases (PTP) that, in addition to a PTP domain, contain FERM (Band 4.1, Ezrin, Radixin, and Moesin) and PDZ (PSD-95, Dlg, ZO-1) domains. Both PTP have been implicated as negative-regulators of early signal transduction through the T cell antigen receptor (TCR), acting to dephosphorylate the TCRζ chain, a component of the TCR complex. Previously, we reported upon the production and characterization of PTPN3-deficient mice which show normal TCR signal transduction and T cell function. To address if the lack of a T cell phenotype in PTPN3-deficient mice can be explained by functional redundancy of PTPN3 with PTPN4, we generated PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. As in PTPN3 mutants, T cell development and homeostasis and TCR-induced cytokine synthesis and proliferation were found to be normal in PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. PTPN13 is another FERM and PDZ domain-containing non-receptor PTP that is distantly-related to PTPN3 and PTPN4 and which has been shown to function as a negative-regulator of T helper-1 (Th1) and Th2 differentiation. Therefore, to determine if PTPN13 might compensate for the loss of PTPN3 and PTPN4 in T cells, we generated mice that lack functional forms of all three PTP. T cells from triple-mutant mice developed normally and showed normal cytokine secretion and proliferative responses to TCR stimulation. Furthermore, T cell differentiation along the Th1, Th2 and Th17 lineages was largely unaffected in triple-mutants. We conclude that PTPN3 and PTPN4 are dispensable for TCR signal transduction

    Trait phenomenological control predicts experience of mirror synaesthesia and the rubber hand illusion

    Get PDF
    In hypnotic responding, expectancies arising from imaginative suggestion drive striking experiential changes (e.g., hallucinations) — which are experienced as involuntary — according to a normally distributed and stable trait ability (hypnotisability). Such experiences can be triggered by implicit suggestion and occur outside the hypnotic context. In large sample studies (of 156, 404 and 353 participants), we report substantial relationships between hypnotisability and experimental measures of experiential change in mirror-sensory synaesthesia and the rubber hand illusion comparable to relationships between hypnotisability and individual hypnosis scale items. The control of phenomenology to meet expectancies arising from perceived task requirements can account for experiential change in psychological experiments

    Models of Traumatic Cerebellar Injury

    Get PDF
    Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Studies of human TBI demonstrate that the cerebellum is sometimes affected even when the initial mechanical insult is directed to the cerebral cortex. Some of the components of TBI, including ataxia, postural instability, tremor, impairments in balance and fine motor skills, and even cognitive deficits, may be attributed in part to cerebellar damage. Animal models of TBI have begun to explore the vulnerability of the cerebellum. In this paper, we review the clinical presentation, pathogenesis, and putative mechanisms underlying cerebellar damage with an emphasis on experimental models that have been used to further elucidate this poorly understood but important aspect of TBI. Animal models of indirect (supratentorial) trauma to the cerebellum, including fluid percussion, controlled cortical impact, weight drop impact acceleration, and rotational acceleration injuries, are considered. In addition, we describe models that produce direct trauma to the cerebellum as well as those that reproduce specific components of TBI including axotomy, stab injury, in vitro stretch injury, and excitotoxicity. Overall, these models reveal robust characteristics of cerebellar damage including regionally specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and traumatic axonal injury. Further research is needed to better understand the mechanisms underlying the pathogenesis of cerebellar trauma, and the experimental models discussed here offer an important first step toward achieving that objective

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas
    corecore