30 research outputs found

    Stabilization of dense Antarctic water supply to the Atlantic Ocean overturning circulation

    Get PDF
    The lower limb of the Atlantic overturning circulation is resupplied by the sinking of dense Antarctic Bottom Water (AABW) that forms via intense air–sea–ice interactions next to Antarctica, especially in the Weddell Sea. In the last three decades, AABW has warmed, freshened and declined in volume across the Atlantic Ocean and elsewhere, suggesting an ongoing major reorganization of oceanic overturning. However, the future contributions of AABW to the Atlantic overturning circulation are unclear. Here, using observations of AABW in the Scotia Sea, the most direct pathway from the Weddell Sea to the Atlantic Ocean, we show a recent cessation in the decline of the AABW supply to the Atlantic overturning circulation. The strongest decline was observed in the volume of the densest layers in the AABW throughflow from the early 1990s to 2014; since then, it has stabilized and partially recovered. We link these changes to variability in the densest classes of abyssal waters upstream. Our findings indicate that the previously observed decline in the supply of dense water to the Atlantic Ocean abyss may be stabilizing or reversing and thus call for a reassessment of Antarctic influences on overturning circulation, sea level, planetary-scale heat distribution and global climate

    Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon

    Get PDF
    River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF

    Vertical mixing in the ocean

    Get PDF
    The thermohaline circulation of the ocean results primarily from downwelling at sites in the Nordic and Labrador Seas and upwelling throughout the rest of the ocean. The latter is often described as being due to breaking internal waves. Here we reconcile the difference between theoretical and observed estimates of vertical mixing in the deep ocean by presenting a revised view of the thermohaline circulation, which allows for additional upwelling in the Southern Ocean and the separation of the North Atlantic Deep Water cell from the Antarctic Bottom Water cell. The changes also mean that much less wind and tidal energy needs to be dissipated in the deep ocean than was originally thought
    corecore