2,744 research outputs found

    Cross-domain neurobiology data integration and exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the biomedical implications of data from high throughput experiments requires solutions for effective cross-scale and cross-domain data exploration. However, existing solutions do not provide sufficient support for linking molecular level data to neuroanatomical structures, which is critical for understanding high level neurobiological functions.</p> <p>Results</p> <p>Our work integrates molecular level data with high level biological functions and we present results using anatomical structure as a scaffold. Our solution also allows the sharing of intermediate data exploration results with other web applications, greatly increasing the power of cross-domain data exploration and mining.</p> <p>Conclusions</p> <p>The Flex-based PubAnatomy web application we developed enables highly interactive visual exploration of literature and experimental data for understanding the relationships between molecular level changes, pathways, brain circuits and pathophysiological processes. The prototype of PubAnatomy is freely accessible at:[<url>http://brainarray.mbni.med.umich.edu/Brainarray/prototype/PubAnatomy</url>]</p

    Equation of state and high-pressure/high-temperature phase diagram of magnesium

    Get PDF
    The phase diagram of magnesium has been investigated to 211 GPa at 300 K, and to 105 GPa at 4500 K, by using a combination of x-ray diffraction and resistive and laser heating. The ambient pressure hcp structure is found to start transforming to the bcc structure at ∼45 GPa, with a large region of phase-coexistence that becomes smaller at higher temperatures. The bcc phase is stable to the highest pressures reached. The hcp-bcc phase boundary has been studied on both compression and decompression, and its slope is found to be negative and steeper than calculations have previously predicted. The laser-heating studies extend the melting curve of magnesium to 105 GPa and suggest that, at the highest pressures, the melting temperature increases more rapidly with pressure than previously reported. Finally, we observe some evidence of a new phase in the region of 10 GPa and 1200 K, where previous studies have reported a double-hexagonal-close-packed (dhcp) phase. However, the additional diffraction peaks we observe cannot be accounted for by the dhcp phase alone

    Cross-domain neurobiology data integration and exploration

    Get PDF
    Background: Understanding the biomedical implications of data from high throughput experiments requires solutions for effective cross-scale and cross-domain data exploration. However, existing solutions do not provide sufficient support for linking molecular level data to neuroanatomical structures, which is critical for understanding high level neurobiological functions

    Large-Scale Identification of Mirtrons in Arabidopsis and Rice

    Get PDF
    A new catalog of microRNA (miRNA) species called mirtrons has been discovered in animals recently, which originate from spliced introns of the gene transcripts. However, only one putative mirtron, osa-MIR1429, has been identified in rice (Oryza sativa). We employed a high-throughput sequencing (HTS) data- and structure-based approach to do a genome-wide search for the mirtron candidate in both Arabidopsis (Arabidopsis thaliana) and rice. Five and eighteen candidates were discovered in the two plants respectively. To investigate their biological roles, the targets of these mirtrons were predicted and validated based on degradome sequencing data. The result indicates that the mirtrons could guide target cleavages to exert their regulatory roles post-transcriptionally, which needs further experimental validation

    Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork

    Get PDF
    Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase) in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions

    Polymorphism rs4919510:C>G in Mature Sequence of Human MicroRNA-608 Contributes to the Risk of HER2-Positive Breast Cancer but Not Other Subtypes

    Get PDF
    BACKGROUND: A few polymorphisms are located in the mature microRNA sequences. Such polymorphisms could directly affect the binding of microRNA to hundreds of target mRNAs. It remains unknown whether rs4919510:C>G located in the mature miR-608 alters breast cancer susceptibility. METHODS: The association of rs4919510:C>G with risk and pathologic features of breast cancer were investigated in two independent case-control studies, the first set including 1,138 sporadic breast cancer patients (including 927 invasive ductal carcinoma patients, 777 of them with known subtypes: 496 luminal-like, 133 HER2-positive, and 148 triple-negative) and 1,434 community-based controls, and the second set including 294 familial/early-onset breast cancer patients and 500 hospital-based cancer-free controls. Odds ratios (ORs) were estimated by logistic regression. Predicted targets of miR-608 and complementary sequences containing rs4919510:C>G were surveyed to reveal potential pathological mechanism. RESULTS: In the first set, although rs4919510:C>G was unrelated to breast cancer in general patients, variant genotypes (CG/GG) were specifically associated with increased risk of HER2-positive subtype (Adjusted OR = 1.97, 95% CI, 1.34-2.90 in the recessive model). Variant G-allele was the risk allele with OR of 1.62 (95% CI, 1.23-2.15). Patients carrying GG-genotype also had larger HER2-positive tumors (P for Kruskal-Wallis test = 0.006). The relationship between rs4919510:C>G and risk of HER2-positive subgroup was validated in the second set (Bonferroni corrected P = 0.06). The adjusted combined OR (total 164 HER2-positive cases) in the recessive model was 1.97 (95% CI, 1.43-2.72) for GG genotype (corrected P = 1.1 × 10(-4)). Bioinformatic analysis indicated that, HSF1, which is required for HER2-induced tumorigenesis, might be a target of miR-608. The minimum free-energy of ancestral-miR-608 (C-allele) binding to HSF1 is -35.9 kcal/mol, while that of variant-form (G-allele) is -31.5 kcal/mol, indicating a lower affinity of variant-miR-608 to HSF1 mRNA. CONCLUSION: rs4919510:C>G in mature miR-608 may influence HER2-positive breast cancer risk and tumor proliferation
    corecore