65 research outputs found

    Synthesis and characterization of hybrid organic-inorganic materials based on sulphonated polyamideimide and silica

    Get PDF
    The preparation of hybrid organic–inorganic membrane materials based on a sulphonated polyamideimide resin and silica filler has been studied. The method allows the sol–gel process to proceed in the presence of a high molecular weight polyamideimide, resulting in well dispersed silica nanoparticles (<50 nm) within the polymer matrix with chemical bonding between the organic and inorganic phases. Tetraethoxysilane (TEOS) was used as the silica precursor and the organosilicate networks were bonded to the polymer matrix via a coupling agent aminopropyltriethoxysilane (APTrEOS). The structure and properties of these hybrid materials were characterized via a range of techniques including FTIR, TGA, DSC, SEM and contact angle analysis. It was found that the compatibility between organic and inorganic phases has been greatly enhanced by the incorporation of APTrEOS. The thermal stability and hydrophilic properties of hybrid materials have also been significantly improved

    Elucidation on the Effect of Operating Temperature to the Transport Properties of Polymeric Membrane Using Molecular Simulation Tool

    Get PDF
    Existing reports of gas transport properties within polymeric membrane as a direct consequence of operating temperature are in a small number and have arrived in diverging conclusion. The scarcity has been associated to challenges in fabricating defect free membranes and empirical investigations of gas permeation performance at the laboratory scale that are often time consuming and costly. Molecular simulation has been proposed as a feasible alternative of experimentally studied materials to provide insights into gas transport characteristic. Hence, a sequence of molecular modelling procedures has been proposed to simulate polymeric membranes at varying operating temperatures in order to elucidate its effect to gas transport behaviour. The simulation model has been validated with experimental data through satisfactory agreement. Solubility has shown a decrement in value when increased in temperature (an average factor of 1.78), while the opposite has been observed for gas diffusivity (an average factor of 1.32) when the temperature is increased from 298.15Â K to 323.15Â K. In addition, it is found that permeability decreases by 1.36 times as the temperature is increased

    Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation

    Get PDF
    Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation. However, their use is limited to aqueous solutions because GO membranes appear impermeable to organic solvents, a phenomenon not yet fully understood. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from large (10-20 μm) flakes. Without modification of sieving characteristics, these membranes can be made exceptionally thin, down to â 1/410 nm, which translates into fast water and organic solvent permeation. We attribute organic solvent permeation and sieving properties to randomly distributed pinholes interconnected by short graphene channels with a width of 1 nm. With increasing membrane thickness, organic solvent permeation rates decay exponentially but water continues to permeate quickly, in agreement with previous reports. The potential of ultrathin GO laminates for organic solvent nanofiltration is demonstrated by showing >99.9% rejection of small molecular weight organic dyes dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification and filtration technologies

    Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving

    Get PDF
    Synthetic chemists have devoted tremendous effort towards the production of precision synthetic polymers with defined sequences and specific functions. However, the creation of a general technology that enables precise control over monomer sequence, with efficient isolation of the target polymers, is highly challenging. Here, we report a robust strategy for the production of sequence-defined synthetic polymers through a combination of liquid-phase synthesis and selective molecular sieving. The polymer is assembled in solution with real-time monitoring to ensure couplings proceed to completion, on a three-armed star-shaped macromolecule to maximize efficiency during the molecular sieving process. This approach is applied to the construction of sequence-defined polyethers, with side-arms at precisely defined locations that can undergo site-selective modification after polymerization. Using this versatile strategy, we have introduced structural and functional diversity into sequence-defined polyethers, unlocking their potential for real-life applications in nanotechnology, healthcare and information storage

    Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes

    Get PDF
    Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed
    • …
    corecore