26 research outputs found
Addition of Bevacizumab to Chemotherapy in Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis
INTRODUCTION: Recently, studies have demonstrated that the addition of bevacizumab to chemotherapy could be associated with better outcomes in patients with advanced non-small cell lung cancer (NSCLC). However, the benefit seems to be dependent on the drugs used in the chemotherapy regimens. This systematic review evaluated the strength of data on efficacy of the addition of bevacizumab to chemotherapy in advanced NSCLC. METHODS: PubMed, EMBASE, and Cochrane databases were searched. Eligible studies were randomized clinical trials (RCTs) that evaluated chemotherapy with or without bevacizumab in patients with advanced NSCLC. The outcomes included overall survival (OS), progression-free survival (PFS), response rate (RR), toxicities and treatment related mortality. Hazard ratios (HR) and odds ratios (OR) were used for the meta-analysis and were expressed with 95% confidence intervals (CI). RESULTS: We included results reported from five RCTs, with a total of 2,252 patients included in the primary analysis, all of them using platinum-based chemotherapy regimens. Compared to chemotherapy alone, the addition of bevacizumab to chemotherapy resulted in a significant longer OS (HR 0.89; 95% CI 0.79 to 0.99; p = 0.04), longer PFS (HR 0.73; 95% CI 0.66 to 0.82; p<0.00001) and higher response rates (OR 2.34; 95% CI 1.89 to 2.89; p<0.00001). We found no heterogeneity between trials, in all comparisons. There was a slight increase in toxicities in bevacizumab group, as well as an increased rate of treatment-related mortality. CONCLUSIONS: The addition of bevacizumab to chemotherapy in patients with advanced NSCLC prolongs OS, PFS and RR. Considering the toxicities added, and the small absolute benefits found, bevacizumab plus platinum-based chemotherapy can be considered an option in selected patients with advanced NSCLC. However, risks and benefits should be discussed with patients before decision making
Sequence dependent antitumour efficacy of the vascular disrupting agent ZD6126 in combination with paclitaxel
The clinical success of small-molecule vascular disrupting agents (VDAs) depends on their combination with conventional therapies. Scheduling and sequencing remain key issues in the design of VDA–chemotherapy combination treatments. This study examined the antitumour activity of ZD6126, a microtubule destabilising VDA, in combination with paclitaxel (PTX), a microtubule-stabilising cytotoxic drug, and the influence of schedule and sequence on the efficacy of the combination. Nude mice bearing MDA-MB-435 xenografts received weekly cycles of ZD6126 (200 mg kg−1 i.p.) administered at different times before or after PTX (10, 20, and 40 mg kg−1 i.v.). ZD6126 given 2 or 24 h after PTX showed no significant benefit, a result that was attributed to a protective effect of PTX against ZD6126-induced vascular damage and tumour necrosis, a hallmark of VDA activity. Paclitaxel counteracting activity was reduced by distancing drug administrations, and ZD6126 given 72 h after PTX potentiated the VDA's antitumour activity. Schedules with ZD6126 given before PTX improved therapeutic activity, which was paralleled by a VDA-induced increase in cell proliferation in the viable tumour tissue. Paclitaxel given 72 h after ZD6126 yielded the best response (50% tumours regressing). A single treatment with ZD6126 followed by weekly administration of PTX was sufficient to achieve a similar response (57% remissions). These findings show that schedule, sequence and timing are crucial in determining the antitumour efficacy of PTX in combination with ZD6126. Induction of tumour necrosis and increased proliferation in the remaining viable tumour tissue could be exploited as readouts to optimise schedules and maximise therapeutic efficacy
A phase I open-label study evaluating the cardiovascular safety of sorafenib in patients with advanced cancer
Purpose: To characterize the cardiovascular profile of sorafenib, a multitargeted kinase inhibitor, in patients with advanced cancer. Methods: Fifty-three patients with advanced cancer received oral sorafenib 400 mg bid in continuous 28-day cycles in this open-label study. Left ventricular ejection fraction (LVEF) was evaluated using multigated acquisition scanning at baseline and after 2 and 4 cycles of sorafenib. QT/QTc interval on the electrocardiograph (ECG) was measured in triplicate with a Holter 12-lead ECG at baseline and after 1 cycle of sorafenib. Heart rate (HR) and blood pressure (BP) were obtained in duplicate at baseline and after 1 and 4 cycles of sorafenib. Plasma pharmacokinetic data were obtained for sorafenib and its 3 main metabolites after 1 and 4 cycles of sorafenib. Results: LVEF (SD) mean change from baseline was -0.8 (8.6) LVEF(%) after 2 cycles (n=31) and -1.2 7.8) LVEF(%) after 4 cycles of sorafenib (n=24). The QT/QTc mean changes from baseline observed at maximum sorafenib concentrations () after 1 cycle (n=31) were small (QTcB: 4.2 ms; QTcF: 9.0 ms). Mean changes observed after 1 cycle in BP (n=31) and HR (n=30) at maximum sorafenib concentrations () were moderate (up to 11.7 mm Hg and -6.6 bpm, respectively). No correlation was found between the AUC and () of sorafenib and its main metabolites and any cardiovascular parameters. Conclusions: The effects of sorafenib on changes in QT/QTc interval on the ECG, LVEF, BP, and HR were modest and unlikely to be of clinical significance in the setting of advanced cancer treatment
Vascular disrupting agents in clinical development
Growth of human tumours depends on the supply of oxygen and nutrients via the surrounding vasculature. Therefore tumour vasculature is an attractive target for anticancer therapy. Apart from angiogenesis inhibitors that compromise the formation of new blood vessels, a second class of specific anticancer drugs has been developed. These so-called vascular disrupting agents (VDAs) target the established tumour vasculature and cause an acute and pronounced shutdown of blood vessels resulting in an almost complete stop of blood flow, ultimately leading to selective tumour necrosis. As a number of VDAs are now being tested in clinical studies, we will discuss their mechanism of action and the results obtained in preclinical studies. Also data from clinical studies will be reviewed and some considerations with regard to the future development are given
Is spleen tyrosine kinase inhibition an effective therapy for patients with RA?
Despite the success of biologic therapeutic agents that target cytokines and lymphocytes, clinical needs remain unmet in the treatment of rheumatoid arthritis (RA). The development of small-molecule inhibitors that can block critical immune signal-transduction pathways are of particular interest as novel therapies for RA. Spleen tyrosine kinase (SYK) subserves the function of Fc receptors and the B-cell receptor; as such, it is attractive as a potential therapeutic target. Weinblatt and colleagues recently performed a proof-of-concept study, which demonstrated that inhibition of SYK reduced RA disease activity and levels of disease-relevant biomarkers. Dose-limiting adverse effects include diarrhea, neutropenia and hypertension, which result from both target-dependent and off-target effects. This novel study provides the first evidence that SYK could be a useful therapeutic target in RA