106,758 research outputs found

    Measurement of time differences between luminous events Patent

    Get PDF
    Mechanism for measuring nanosecond time differences between luminous events using streak camer

    Encoding of low-quality DNA profiles as genotype probability matrices for improved profile comparisons, relatedness evaluation and database searches

    Get PDF
    Many DNA profiles recovered from crime scene samples are of a quality that does not allow them to be searched against, nor entered into, databases. We propose a method for the comparison of profiles arising from two DNA samples, one or both of which can have multiple donors and be affected by low DNA template or degraded DNA. We compute likelihood ratios to evaluate the hypothesis that the two samples have a common DNA donor, and hypotheses specifying the relatedness of two donors. Our method uses a probability distribution for the genotype of the donor of interest in each sample. This distribution can be obtained from a statistical model, or we can exploit the ability of trained human experts to assess genotype probabilities, thus extracting much information that would be discarded by standard interpretation rules. Our method is compatible with established methods in simple settings, but is more widely applicable and can make better use of information than many current methods for the analysis of mixed-source, low-template DNA profiles. It can accommodate uncertainty arising from relatedness instead of or in addition to uncertainty arising from noisy genotyping. We describe a computer program GPMDNA, available under an open source license, to calculate LRs using the method presented in this paper.Comment: 28 pages. Accepted for publication 2-Sep-2016 - Forensic Science International: Genetic

    SDSS J142625.71+575218.3: the First Pulsating White Dwarf With A Large Detectable Magnetic Field

    Get PDF
    We report the discovery of a strong magnetic field in the unique pulsating carbon- atmosphere white dwarf SDSS J142625.71 + 575218.3. From spectra gathered at the MMT and Keck telescopes, we infer a surface field of B(s) similar or equal to 1.2 MG, based on obvious Zeeman components seen in several carbon lines. We also detect the presence of a Zeeman- splitted He I lambda 4471 line, which is an indicator of the presence of a nonnegligible amount of helium in the atmosphere of this "hot DQ" star. This is important for understanding its pulsations, as nonadabatic theory reveals that some helium must be present in the envelope mixture for pulsation modes to be excited in the range of effective temperature where the target star is found. Out of nearly 200 pulsating white dwarfs known today, this is the first example of a star with a large detectable magnetic field. We suggest that SDSS J142625.71 + 575218.3 is the white dwarf equivalent of a rapidly oscillating Ap star.NSERCNSF AST 03-07321Reardon FoundationAstronom

    Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 3: Laser Doppler velocimeter report

    Get PDF
    Laser Doppler velocimeter (LDV) techniques were employed for testing a highly loaded, 550 m/sec (1800 ft/sec) tip speed, test fan stage, the objective to provide detailed mapping of the upstream, intrablade, and downstream flowfields of the rotor. Intrablade LDV measurements of velocity and flow angle were obtained along four streamlines passing through the leading edge at 45%, 69%, 85%, and 95% span measured from hub to tip, at 100% of design speed, peak efficiency; 100% speed, near surge; and 95% speed, peak efficiency. At the design point, most passages appeared to have a strong leading edge shock, which moved forward with increasing strength near surge and at part speeds. The flow behind the shock was of a complex mixed subsonic and supersonic form. The intrablade flowfields were found to be significantly nonperiodic at 100% design speed, peak efficiency

    The open cluster initial-final mass relationship and the high-mass tail of the white dwarf distribution

    Full text link
    Recent studies of white dwarfs in open clusters have provided new constraints on the initial - final mass relationship (IFMR) for main sequence stars with masses in the range 2.5 - 6.5 Mo. We re-evaluate the ensemble of data that determines the IFMR and argue that the IFMR can be characterised by a mean initial-final mass relationship about which there is an intrinsic scatter. We investigate the consequences of the IFMR for the observed mass distribution of field white dwarfs using population synthesis calculations. We show that while a linear IFMR predicts a mass distribution that is in reasonable agreement with the recent results from the PG survey, the data are better fitted by an IFMR with some curvature. Our calculations indicate that a significant (~28%) percentage of white dwarfs originating from single star evolution have masses in excess of ~0.8 Mo, obviating the necessity for postulating the existence of a dominant population of high-mass white dwarfs that arise from binary star mergers.Comment: 5 pages, 2 color Postscript figures. Accepted for publication in MNRA

    In-medium electron-nucleon scattering

    Get PDF
    In-medium nucleon electromagnetic form factors are calculated in the quark meson coupling model. The form factors are typically found to be suppressed as the density increases. For example, at normal nuclear density and Q20.3GeV2Q^2 \sim 0.3 { GeV}^2, the nucleon electric form factors are reduced by approximately 8% while the magnetic form factors are reduced by only 1 - 2%. These variations are consistent with current experimental limits but should be tested by more precise experiments in the near future.Comment: 14 pages, latex, 3 figure

    Simultaneous Multiwavelength Observations of Magnetic Activity in Ultracool Dwarfs. IV. The Active, Young Binary NLTT 33370 AB (=2MASS J13142039+1320011)

    Get PDF
    We present multi-epoch simultaneous radio, optical, H{\alpha}, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 ±\pm 0.0001 and 3.7130 ±\pm 0.0002 hr. While these differ by only ~2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The system's radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational campaign. We interpret the last of these as a gyrosynchrotron feature associated with large-scale magnetic fields and a cool, equatorial plasma torus. However, the persistent rapid flares at all rotational phases imply that small-scale magnetic loops are also present and reconnect nearly continuously. We present an SED of the blended system spanning more than 9 orders of magnitude in wavelength. The significant magnetism present in NLTT 33370 AB will affect its fundamental parameters, with the components' radii and temperatures potentially altered by ~+20% and ~-10%, respectively. Finally, we suggest spatially resolved observations that could clarify many aspects of this system's nature.Comment: emulateapj, 22 pages, 15 figures, ApJ in press; v2: fixes low-impact error in Figure 15; v3: now in-pres
    corecore