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ABSTRACT

Many DNA profiles recovered from crime scene samples are of a quality that does not 
allow them to be searched against, nor entered into, databases. We propose a method for 
the comparison of profiles arising from two DNA samples, one or both of which can have 
multiple donors and be affected by low DNA template or degraded DNA.  We compute 
likelihood ratios to evaluate the hypothesis that the two samples have a common DNA 
donor, and hypotheses specifying the relatedness of two donors. Our method uses a 
probability distribution for the genotype of the donor of interest in each sample.  This 
distribution can be obtained from a statistical model, or we can exploit the ability of trained 
human experts to assess genotype probabilities, thus extracting much information that 
would be discarded by standard interpretation rules. Our method is compatible with 
established methods in simple settings, but is more widely applicable and can make better 
use of information than many current methods for the analysis of mixed-source, 
low-template DNA profiles. It can accommodate uncertainty arising from relatedness 
instead of or in addition to uncertainty arising from noisy genotyping. We describe a 
computer program GPMDNA , available under an open source license, to calculate LRs 
using the method presented in this paper.

 1 Introduction
Crime scene samples often contain DNA from multiple individuals, some or all of whom 
contribute small amounts of DNA that may have suffered degradation following 
environmental exposure. An electropherogram (epg) arising from such a sample can show 
stochastic effects that make it difficult to identify all of the alleles in the underlying 
genotypes [1,2].  Uncertain alleles are often encoded as “unknown”. For example the UK 
National DNA Database uses the coding F which can match any allele in a subsequent 
database search [3].  But if there is only limited uncertainty about the genotypes at several 
loci,  designating them all as unknown is wasteful of potentially valuable information. We 
propose instead to encode the epg information as probability distributions over genotypes, 
each encoded as a genotype probability matrix (GPM).

We show how to compute from two GPMs a likelihood ratio (LR) assessing the evidence 
that the donors of interest to the samples have a specified genetic relationship, including 
the important special case that they are the same person. In standard settings there is a 
reference profile that specifies a unique genotype, while the information from the crime 
scene epg may be represented as a list of alleles with peak heights.  We allow each of the 
two profiles being compared to be represented as a GPM.  In the special case of a 
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reference profile, one genotype is assigned probability one.

We expect that our proposed method will generate substantial benefits from its use as an 
intelligence tool.  Given one or more complex profiles, the method permits speedy and 
accurate inferences to guide an investigation, for example in seeking a contributor to 
multiple, noisy crime scene profiles (CSP). However, our approach is also suitable for 
conveying weight of evidence to a finder of fact within a judicial system.  We believe that 
the approach has great potential in improved database searches: the CSP and partial 
profiles in the database can be represented as GPMs, leading to informative search 
results that take account of any uncertainty in either query or database profiles. Rigid rules
for the “quality” of a profile to be included in the database, or for searches of it, can be 
greatly relaxed.  With probabilistic encoding of epg information, poorer quality samples will 
automatically generate more diffuse probability distributions and hence weaker LRs, 
without the need for rules based on thresholds.  Our approach can also be used when 
uncertainty arises due to genotype information only being available for relatives of the 
target individual, including familial database searches.

We briefly discuss below the generation of a GPM from an epg using a statistical model, 
but our approach can also be used in conjunction with an expert forensic scientist who 
directly encodes the epg information as a GPM.  This encoding implies an element of 
subjectivity, but inter-expert comparisons and blind proficiency testing can satisfy a court's 
requirement for objectivity.  Our approach is designed to exploit the ability of experts to 
make use of complex information quickly and efficiently, without the need for inflexible 
rules or sophisticated software.  Experts can make better use of the epg than is the case in
much current practice because probabilities allow gradations of judgement that better 
reflect the available information than do interpretation rules based on thresholds.

In Appendix A4 we describe GPMDNA, a software tool that implements the methods 
described in this paper.

 2 Encoding an epg in a genotype probability matrix
Although the interpretation of an epg can largely be automated, an expert forensic scientist
is usually called on to confirm the automatic interpretation, and sometimes over-rule 
decisions relating to apparent artefacts such as split peaks and stutter.  We distinguish this
process of “interpretation” from that of “evaluation” in which numerical summaries of 
evidential weight are computed.  For a single-source sample of good quality DNA, the 
result of an interpretation is the genotype of the donor at the tested loci. However, for 
many CSPs the genotype of an unknown donor of interest cannot be inferred with certainty
from the epg.  Reasons for this can include low DNA template and/or degraded DNA 
leading to the possibility of dropout of some alleles, DNA from more than one individual 
(mixed profile), and uncertainty about possible artefacts.

The need for objectivity in legal settings has led to the adoption of interpretation rules 
based on thresholds that have been shown in laboratory trials to have good properties 
over many real or simulated examples [4, 5].  For example, peaks below a threshold 
(typically 25 to 50 relative fluorescence units, RFU) are dismissed as noise, while single 
peaks above another  threshold (typically 200 to 300 RFU) are interpreted as 
homozygotes (thus ruling out dropout of another allele from the donor at that locus) [3]. 
Similarly, a peak is interpreted as stutter or allelic according to whether or not its height is 
below a threshold fraction of the peak height at the “parent” allele (at one repeat unit larger
than the peak under consideration).
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These interpretation rules suffer from a “cliff edge” effect [6].  For example, a peak in a 
stutter position can be classified as certainly stutter, yet if it were slightly higher it would be 
regarded as certainly allelic.  The setting of thresholds is usually intended to be 
“conservative”, such that in laboratory trials an allelic designation is rarely made when not 
correct.  However, a reduction in one kind of error for a binary classification inevitably 
implies an increase in the other error, so that true alleles are wrongly designated as stutter.
Moreover, this “conservative” policy does not necessarily favour defendants: broadly 
speaking, fewer alleles called from a crime scene epg means less information to identify 
donors, which in general helps defendants, but calling a peak as stutter rather than allelic 
can disfavour a defendant whose profile does not include that allele.

Most importantly, many laboratories have rules for deciding when the genotype of the 
major donor to a mixture can be confidently identified, referred to as deconvolution of a 
mixed profile.  Because of masking, it is almost never possible to determine the genotype 
of any donor other than a clear major.  Typically, deconvolution is not permissible if the two
greatest DNA donors gave similar amounts of DNA to the sample, but as the discrepancy 
in the amounts of DNA increases, it becomes increasingly possible to make a confident 
inference of the genotype of the major donor.  Choosing criteria for when the major 
genotype can be inferred with sufficient confidence is problematic, and the implications 
can be considerable, because the evidential weight attached to a single genotype 
deconvolved from a mixture can be many orders of magnitude greater than for the mixed 
profile.

Experts are capable of making fine judgements about the plausibilities of different possible
states of nature (e.g. stutter/allele).  We believe that in general they do this well, better 
than decision processes based on thresholds, and that their ability can be assessed by 
inter-expert comparisons in blind trials.  We propose to exploit the ability of a trained 
human expert to accurately process complex information, by allowing them to specify a 
probability distribution for the genotype of a donor of interest to a complex DNA profile.  
Typically, this donor will be the source of the largest amount of DNA, excluding known 
donors.  For example, if the genotype of the major donor is clear at most loci, but there is 
some ambiguity at one or two loci, this information can be fully captured by specifying a 
unique genotype (probability one) at the relevant loci, but encoding the ambiguous loci as 
probability distributions concentrated on the genotypes consistent with the epg.  If the 
donor of interest is a minor donor, while the major donor genotype is known, then the 
assignment of probabilities to genotypes should allow for any uncertainty due to masking 
of alleles by the major profile.  We can also specify a joint genotype distribution for more 
than one unknown contributor, from which marginal genotype distributions can be 
obtained.

The genotype of an individual at a short tandem repeat (STR) locus consists of an 
unordered pair from a set of possible alleles.  We encode an uncertain genotype at a locus
as a GPM, a symmetric matrix, with non-negative entries that sum to one.  The number of 
rows and columns is the number of alleles recognised at the locus.  The diagonal entries 
are the probabilities of the homozygote genotypes, and the (i , j) th and ( j , i) th entries are
each half the probability of an ij  heterozygote.  GPMs can be used to encode epg 
information or information about an individual's genotype obtained from genotypes of their 
relatives.
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 3 Calculating single-locus LRs using GPMs
Consider two GPMs, G1 and G2, and suppose that we seek to compare the propositions:

ƞ1  : G1 and G2  represent the genotype of the same individual.

ƞ0 : G1 and G2 represent the genotypes of two unrelated individuals (who can have 
the same genotype).

In a standard setting, one GPM is from a CSP and may reflect uncertainty as discussed 
above, while the other encodes a reference profile that is usually assumed to be measured
without error.  However, our framework treats G1 and G2 in the same way, and hence 
allows for uncertainty in both profiles.  An uncertain reference profile can arise if the 
individual is not available to give a good-quality DNA sample, and it has been obtained 
from a personal item such as a comb or toothbrush, or when it has been inferred from the 
genotypes of one or more relatives.  In other situations there may be no reference profile, 
and the task is to assess whether the same individual has contributed to different CSPs.

We will initially assume that, under ƞ0, the two individuals are unrelated and have no 
coancestry (that is FST = 0, see below).  The case that the two individuals have a specified 
relationship, or are unrelated but share coancestry for example due to population 
structure, is discussed below.  Genotypes are regarded a priori as random draws from a 
GPM representing the population genotype distribution, which we denote B (for 
background).  It is standard practice in forensic DNA analysis to assume independence of 
each individual's two alleles at a locus, which is called Hardy-Weinberg Equilibrium (HWE) 
[7].  In that case B can be expressed in the form B = bTb where b denotes a row vector of 
allele probabilities.  Here, T denotes transpose, so bT is a k x 1 column vector and B is k x 
k.   In practice, the elements of b are relative frequencies obtained from a population 
database.  There may be evidence suggesting a specific ethnic background of a donor of 
interest and hence an appropriate choice of B, or the weight of evidence may be assessed
for multiple B matrices reflecting different possible ethnic backgrounds.

The LR conveying the weight of DNA evidence in support of ƞ1 relative to ƞ0 is the ratio of 
the probability of the evidence if ƞ1 is true, to its probability if ƞ0 holds [7].

Theorem 1 

LR(η1 , η0) = ∑
ij

Gij
1
⋅Gij

2

Bij

(1)

where the subscript ij denotes the ijth entry of a matrix.  The proof is in Appendix A1.

Each element of the numerator of (1) is the product of the probabilities that an ij genotype 
underlies each of samples 1 and 2.  The denominator, B ij is the probability for an unknown,
unprofiled individual to have genotype ij.  In (1), the ratio of these terms is summed over all
genotypes at the locus.

Here, we assume that only one population is relevant, so that the B ij apply to both 
contributors under ƞ0. Equation (1) holds approximately if the two individuals come from 
different populations each with their own background genotype frequency matrix: in this 
case the B that represents the alternative contributor under ƞ0 should be used. In Section 
(6) we generalise (1) to allow for the two individuals under η0   to come from the same 
subpopulation of the population from which the Bij are obtained (coancestry correction).
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In the special case that both G1 and G2 assign probability 1 to one genotype (spread over 
two entries of 0.5 for a heterozygote), (1) simplifies to 1/(2 Bij)  (using B ij  = B ji ), if 
genotype ij is specified by both G1 and G2 ( 1/B ii  for a homozygote), and zero otherwise.  
This corresponds to the familiar result that the LR is the reciprocal of the population 
genotype probability, which is the special case of the match probability when FST = 0.

As an example, consider a locus with three known alleles (a ,b ,c) . Suppose we have a 
CSP from which an expert judges P (aa)=0.5,P(ab)=0.5 , a reference profile P (ab)=1  (ie 
certainly ab), and  P (a)=0.5,P (b)=0.3,P(c)=0.2 . Then we have GPMs:

G1=(
0.5 0.25 0

0.25 0 0
0 0 0)  , G 2=(

0 0.5 0
0.5 0 0
0 0 0)  , B=(

0.25 0.15 0.10
0.15 0.09 0.06
0.10 0.06 0.04)

and we may calculate the LR from (1) as

LR=∑
(

0.5 0.25 0
0.25 0 0

0 0 0)⋅(
0 0.5 0

0.5 0 0
0 0 0)

(
0.25 0.15 0.10
0.15 0.09 0.06
0.10 0.06 0.04)

= ∑ (
0 0.833 0

0.833 0 0
0 0 0) = 1.666

(Note that matrix multiplication ( ⋅ ) and division are both element-wise. If the CSP had 
been found with certainty to be identical to the reference profile we would have

LR=∑
(

0 0.5 0
0.5 0 0
0 0 0)⋅(

0 0.5 0
0.5 0 0
0 0 0)

(
0.25 0.15 0.10
0.15 0.09 0.06
0.10 0.06 0.04)

= ∑ (
0 1.667 0

1.667 0 0
0 0 0) = 3.333

which equals the standard result LR=1 /P (ab)=1 /(2∗0.5∗0.3)=3.333 . The reader may 
wish to check that if the same probabilistically encoded matrix G1 is matched against a 
reference profile that is certainly aa then LR = 2.0.

 4 LRs under specified relationships
A GPM for any individual can be used to generate GPMs for their parents and children, 
and subsequently other relatives.  To see this, note that a GPM specifies an allele 
probability vector via its row or column sums (because GPMs are symmetric, these are the
same).  If p1 and p2 denote allele probability vectors for two parents, under HWE the GPM 
for their child can be written 

G = (p1
Tp2 + p2

Tp1)/2. (2)

We ignore the possibility of mutation here, and we continue to assume FST = 0 (no 
coancestry).   If there is no genotype information available for one parent, then b, the 
population allele probability vector, can be used instead:
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Figure 1: GPMs for relatives of a profiled individual. 

Under HWE, each GPM can be specified by two parental allele probability vectors, p1 and p2, 
which are given here for each individual at a four-allele locus.  The GPM of a reference individual is
specified (here Profile 1 has genotype AC, indicated by the p1 and p2 assignments highlighted in 
yellow).  The population allele probability vector b is shaded in grey at each instance.  For 
example, CHILD has one allele from Profile 1, which is equally likely to be A or C, and one allele 
chosen according to b.  The diagram shows both the marginal GPM for a parental genotype (“A 
PARENT”), and also the joint GPMs of both parents (“ONE PARENT” and “THE OTHER”, both 
included in a box).  A similar situation applies to the grandparents through a specified parent. 

---------------------------------------------------------------G = (pTb + bTp)/2. (3)

The GPM of a parent given a child's allele probability vector c is

G = (cTb + bTc)/2 (4)

which is equivalent to (3), reflecting the symmetry of the parent-child relationship (and any 
unilineal relationship) when no other genotyped relatives are available. Given a GPM for 
an individual, the GPM for any unilineal relative can be obtained by applying the above two
steps for every parent-child link separating the relatives (1. generate an allele frequency 
vector from the GPM; 2. use (3) or (4) to generate a new GPM). Explicit formulae for some
common relationships are developed in Appendix A2.
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Specifying the joint probability distributions for two parents is more complex, because their 
genotypes are dependent given their child's genotype. For simplicity, we focus only on a 
pair of relatives, one of whom is genotyped.  Relationships among multiple individuals 
pose no problem in principle: Bayesian networks provide a good framework for 
propagating GPMs through arbitrary networks of related individuals, and GPMs can be 
assigned to any specified members of the network [8].

Figure 1 illustrates the derivation of GPMs via relatedness in some important special 
cases.  Assuming HWE, these GPMs can always be expressed in terms of two allele 
probability vectors.  This simpler representation  is not always available for GPMs derived 
directly from an epg.  In Figure 1 the genotype for Profile 1 is known with certainty, but we 
can also combine uncertainty from a noisy epg with uncertainty due to relatedness.

If G denotes a GPM for an individual, we will write R(G) to denote the GPM derived from G
for a specified relative, using one or more instances of (3) or (4).   Note that R(B) = B, 
since the probability distribution for an individual of unknown genotype is the same as for 
any of their relatives.  In place of hypothesis η1 , we now contrast ƞ0 with

ƞR : the individual underlying G1 is an R-relative of the individual underlying G2.

Theorem 2 

LR(ηR ,η0) = ∑
ij

Gij
1⋅R (Gij

2)

Bij

(5)

See Appendix A3 for proof.  Equation (5) simplifies to standard LR formulae for relatives 
(see for example Fung [9]) in the special case that  the GPMs G1 and G2 assign probability
1 to a single genotype at each marker.

As an example consider the matrices G1, G2 and B from the previous section, but now ask
whether the two samples come from full siblings. The derivation of a GPM for a specified 
relative of a profiled individual is described in appendix A2. From the final row of table A2-2
we find that

Sib (G2) = [(0 0.5 0
0.5 0 0
0 0 0)+(

0.25 0.15 0.10
0.25 0.15 0.10
0 0 0 )+(

0.25 0.25 0
0.15 0.15 0
0.10 0.10 0)+(

0.25 0.15 0.10
0.15 0.09 0.06
0.10 0.06 0.04)]/4

= (
0.1875 0.2625 0.05
0.2625 0.0975 0.04
0.0500 0.0400 0.01 )

 

and we calculate the LR from (5) as

LR=∑
(

0.5 0.25 0
0.25 0 0

0 0 0)⋅(
0.1875 0.2625 0.05
0.2625 0.0975 0.04
0.0500 0.0400 0.01)

(
0.25 0.15 0.10
0.15 0.09 0.06
0.10 0.06 0.04)

= ∑ (
0.3750 0.4375 0
0.4375 0 0

0 0 0) = 1.25
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 5 Mutation models.
In Figure 1, and in deriving (5), we assumed no mutation at the locus under consideration 
in the genetic lineage linking the two relatives.  That assumption was for convenience only 
and is not required.

Mutations occur at forensic STR loci roughly once every 500 generations in males, and 
once every 2000 generations in females [10].  About 97% of mutations change the repeat 
count by one.  Thus the stepwise mutation model, in which all mutations are between 
alleles that differ by one repeat unit, is incorrect but can provide a good approximation.  
The further simplifying assumption of symmetry (steps up as likely as steps down) may be 
adequate over small numbers of generations, but steps up are more common [10].  We 
introduce a mutation matrix M, whose ijth entry is the probability that a child receives a j 
allele given that the parental allele was an i.  Thus 1-Mii is the total mutation rate for an i 
allele.

To compute the GPM of an individual, given the GPM of their relative and allowing for 
mutation in parent-child transmissions, we proceed as described in Section 4 and 
illustrated in Figure 1 except that a parental allele probability vector p should be replaced 
with pM when computing the child's GPM.  The population allele probability vector b is 
assumed to be the same across generations.  This implies bM = b, which holds at least  
approximately for realistic M.  Theorem 2 continues to hold if R is replaced with RM, 
denoting the transformation of a GPM due to relatedness allowing for mutation.

 6 Population structure and coancestry
Even if two individuals have no close relatedness, they may share common ancestors a 
handful of generations in the past, so that their genotypes are positively correlated and the
independence assumption underpinning Theorems 1 and 2 is not valid.   The simplest 
scenario in which coancestry is important is the case that, under ƞ0, the individuals whose 
genotypes underlie G1 and G2 both come from the same subpopulation of the population 
from which b has been obtained.  A dependence between the genotypes arises because 
the genotype of either one of them is informative about the local allele probabilities which 
alters the probability distribution for the other individual.  A mathematical model has been 
developed for such dependence, sometimes called the Balding-Nichols conditional model 
[7].  It is the basis of equation 4.10 in the NRCII report [11]. It assumes in effect that the 
local allele probability vector has a Dirichlet distribution with mean b and variance 
determined by the population genetics parameter FST (sometimes called θ).  Theorems 1 
and 2 assume FST = 0, corresponding to zero variance.

The details of the Balding-Nichols model are not important here.  All we need is notation 
for conditional genotype probabilities.  B still specifies the marginal GPM of an unknown 
individual, but the GPM for a second unknown individual requires a GPM conditional on 
the genotype, say ij, of the first individual; we will denote this conditional GPM B | ij .  Thus
B pq | ij is the pq  entry of B | ij , the probability that an unknown individual has genotype pq  
given the observation of an unrelated individual in the same subpopulation with genotype
ij .  See Appendix A3 for derivation of the LR which we now state, corresponding to 
Theorem 2 which allows for relatedness and mutation but now further extended to allow for
coancestry between the two individuals under η0 :
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LR(ηR , η0) =

∑
ij

Gij
1
⋅RM (Gij

2 )
Bij

∑
ij

Gij
1
⋅H ij

2

 ;  H ij
2

= ∑
pq

Gpq
2

⋅B pq | ij

Bpq

(6)

The numerator of (6) equals (5), while the denominator is the “GPM subpopulation 
correction factor”.  It reduces to 1 when FST = 0, in which case B | ij=B .

Equation (6) is our most general expression for the LR, and is valid for any choice of  
conditional probabilities Bpq |ij , including the Balding-Nichols subpopulation correction [7: 
S5.3.1.2]. Note however that the familial formulae given in Appendix 2 assume HWE which
does not apply under the Balding-Nichols model.   For these calculations GPMDNA 
implements the beta-binomial sampling formula underlying the Balding-Nichols model [7: 
S7.2] and also for the RM  matrix (see Appendix A4).

 7 Encoding an epg as a GPM

 7.1 Using a statistical model

A number of statistical models and software for the evaluation of low-template DNA 
(LTDNA) profiles have been published in recent years [2, 12, 13,14].  LRs are calculated 
by summing over the possible genotypes of unknown contributors, using explicit models of
processes such as dropout, dropin, stutter and degradation [15,16].  Some degree of 
expert judgement is still required in processing the epg into input data for the software, for 
example in encoding apparent artefacts.

In contrast, our approach uses the epg to infer contributor genotype(s) as a first step, but 
since the recent statistical models each imply a probability distribution for these genotypes 
there is no conflict.  Indeed the statistical models can be used to derive contributor GPMs 
from an epg. However, here we emphasise that expert judgement can also form a valid 
basis for deriving GPMs: we return to discussing the advantages of our approach in the 
Conclusion.   

In the special case that G1 specifies a unique genotype (a reference profile), encoding a 
full GPM G2 is not required since only the entries corresponding to the genotype specified 

by G1 are used in (6).  However,  epgs should be encoded 'blind', without knowledge of the
subsequent comparisons, and so a full GPM is required. Here, we consider the problem of 
encoding epgs in a range of common situations.   The subsequent calculation of LRs  
using (1), (5) or (6) is a straightforward computation. We noted above that statistical 
algorithms are available for inferring genotypes from an epg, we here assume subjective 
deconvolution by a trained expert.

 7.2 Expert assessment

When assigning genotype probabilities, the expert makes assessments of the number of 
significant contributors and the relative amounts of DNA from each of them, based on the 
observed peaks, particularly their heights.  Note that the expert can choose to specify a 
GPM only for the major contributor, or for the two most important contributors, without 
drawing inferences about the genotypes of lesser contributors.  There is no requirement to 
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assess the total number of contributors of DNA to the sample: this number is of little 
importance when some individuals contribute negligible amounts of DNA.  The GPM 
assessments should take into account the genotypes of known contributors, and allow for 
stochastic phenomena such as variability in peak heights, as well as possible drop out and
drop in.  When there is uncertainty about the genotype of a contributor, for example if there
is a single epg peak that may represent a homozygote genotype or a heterozygote with 
one allele dropped out, then the expert may also take into account a vector b of 
background allele probabilities for unobserved alleles.

The following examples illustrate, for a range of common situations, how an expert may 
take these factors into account. An encoding scheme and shorthand notation can facilitate 
this task, see Appendix A4 for further discussion.

 7.2.1 One contributor of interest

If the contributor of interest is the major contributor of DNA to the sample, and allelic peaks
are well above noise levels, encoding is reasonably straightforward.  At loci where there 
are one or two peaks much higher than the others, the expert can assign high probability 
to a single genotype, whereas at other loci there may be more ambiguity about the major 
peaks, requiring probability judgements based on peak heights and possibly also b.

Example 1:  Single contributor, allowing for dropin and dropout

Consider two peaks with approximate height ratio of  A:B = 2:1 at a locus with only 3 
alleles: A, B, and C. In Table 1 we show three schemes for the expert to encode the epg 
information, all assuming that there is at least one A allele present, while the peak at B 
may be allelic or a dropin. Assuming the allele probabilities are known, the three schemes 
are in order of increasing complexity, with 0, 1 and 2 parameters.  Row (i) corresponds to 
coding the genotype as AF (see discussion above): it is assumed that because the peak at
B could be a dropin, the epg conveys no information about the second allele, which may 
have dropped out. Thus the allele probabilities are given by b. This corresponds to some 
current practice but it ignores available information: the relative peak heights.

Genotypes

AA AB AC

o
p

tio
n

s i bA bB bC

ii Γ 1−Γ 0

iii Γ(1−Δ)+ΓΔ bA (1−Γ)+ΓΔbB ΓΔ bC

Table 1: Genotype probability allocations for options (i) – (iii) discussed in the text.

In row (ii), the expert decides to ignore the possibility that a dropout has occurred but 
considers that the B allele may be a dropin, with probability Γ. Then the genotype is AA 
with probability Γ and AB with probability 1−Γ.  Row (iii) represents an interpolation 
between row (i) (case Δ =1) and row (ii) (case Δ =0).  The value of Δ  reflects the 
probability of dropout: Δ=0  implies zero dropout and so the AC genotype is impossible, 
whereas Δ=1  implies  a high probability of dropout.  The probability of dropout may be 
inferred subjectively by the encoder based on the observed peak heights, or else could be 
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inferred using an established algorithm, for example [19].  A GPM resulting from a 
particular instance of the row (iii) coding is shown in Table 2.

A B C

A 0.220 0.32 0.07

B 0.320 0 0

C 0.07 0 0

Table 2: EPG encoding from row (iii) of Table 1 with b A=0.1 ,bB=0.2 ,bC=0.7 ,Γ=0.4,Δ=0.5

We illustrate LRs for the GPM of Table 2 given reference profiles respectively AA, AB, and 
AC

AA: LR=∑ (
1 0 0
0 0 0
0 0 0)⋅(

0.22 0.32 0.07
0.32 0 0
0.07 0 0 )/(

0.01 0.02 0.07
0.02 0.04 0.14
0.07 0.14 0.49) =∑ (

22 0 0
0 0 0
0 0 0) =22

AB: LR=∑ (
0 0.5 0

0.5 0 0
0 0 0)⋅(

0.22 0.32 0.07
0.32 0 0
0.07 0 0 )/(

0.01 0.02 0.07
0.02 0.04 0.14
0.07 0.14 0.49) =∑ (

0 8 0
8 0 0
0 0 0) =16

AC: LR=∑ (
0 0 0.5
0 0 0

0.5 0 0 )⋅(
0.22 0.32 0.07
0.32 0 0
0.07 0 0 )/(

0.01 0.02 0.07
0.02 0.04 0.14
0.07 0.14 0.49) =∑ (

0 0 0.5
0 0 0

0.5 0 0 )=1

 7.2.2 Two contributors of interest

It is difficult in general to specify a joint genotype distribution for multiple contributors,  
because for example the genotype probabilities for a second contributor will depend on 
genotype assignments for the first contributor.  However, it is feasible in some settings.

If the differences in peak heights between the two contributors are large, it may be 
possible to infer the genotype of the major with certainty, in which case the task reduces to
encoding the genotype of a minor with known major (see Example 2 below).  

Our approach can also be used when the two main contributors can to some extent be 
distinguished through peak heights, but there remains some uncertainty about the 
genotype of the major at some loci, and considerable uncertainty about the minor at most 
loci. We have outlined above how to specify a GPM for the major contributor. A GPM for a 
minor can be similarly derived conditional on each possible genotype for the major. A 
marginal GPM for the minor is then obtained by summing over the major contributor 
genotypes, weighted by their probabilities.  Then the GPMs for major and minor 
contributors can both be used to compute LRs as outlined above, for example to search 
against databases.

A joint genotype distribution can be represented, if required, as a 4-dimensional matrix of 
allele probabilities, or more conveniently as a 2-dimensional matrix of genotype 
probabilities as in Table 3.

Example 2 : Two distinguishable contributors.

arXiv:1601.04767v2 [stat.ME] 14 Sep 2016 11/28



© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Consider three peaks with heights A:B:C = 5:5:2.  Suppose that the expert decides that the
major is AB, and the minor includes at least one C allele, while the other is equally likely to 
be masked by any of A, B or C, so that the joint genotype probabilities are as shown in
Table 3.  The corresponding GPMs for major and minor contributors are shown in Table 4 
and  Table 5.

Major contributor Minor
Marginal

AA AB AC BB BC CC

M
in

o
r 

co
n

tr
ib

u
to

r 
   AA

AB  

AC 0.33 0.33

BB  

BC 0.33 0.33

CC 0.33 0.33

Major Marginal  1  

Table 3: Encoding of Example 2

A B C

A 0 0.5 0

B 0.5 0 0

C 0 0 0

Table 4:  GPM corresponding
to Major in Example 2.

A B C

A 0 0 0.167

B 0 0 0.167

C 0.167 0.167 0.333

Table 5:  GPM corresponding
to Minor in Example 2.

Example 3 : Two distinguishable contributors, neither certain

Consider four peaks with heights A:B:C:D = 5:3:3:2. The expert may decide that the four 
alleles are A, B, C and D; that the A and D peaks are major and minor alleles respectively, 
while B and C are each equally likely to be major and minor alleles1. These assignments 
are shown in Table 6, while the corresponding marginal GPMs are shown in Table 7 and
Table 8.  Note that the joint genotype probabilities do not correspond to the product of the 
marginal probabilities.  For example, there is uncertainty about the origin of the peaks at 
both B and C, but resolving one of them determines the other.

1 In Example 3 since four alleles have been identified dropout may be ignored, and since the same four 
alleles are identified in either scenario, differences in their relative background frequencies do not affect 
the assignment.
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Major contributor Minor Marginal

AA AB AC AD
M

in
o

r 
c

o
n

tr
ib

u
to

r AD

BD 0.5 0.5

CD 0.5 0.5

DD

Major Marginal 0.5 0.5

Table 6: Encoding of Example 3

A B C D

A 0 0.25 0.25 0

B 0.25 0 0 0

C 0.25 0 0 0

D 0 0 0 0

Table 7:  GPM corresponding to
Major in Example 3.

A B C D

A 0 0 0 0

B 0 0 0.25 0.25

C 0 0.25 0 0

D 0 0.25 0 0

Table 8:  GPM corresponding to
Minor in Example 3.

Example 4: Two indistinguishable contributors

Consider three peaks with heights A:B:C: = 5:4:3. Suppose that the expert decides there is
insufficient information to distinguish between contributors, and that alleles A, B and C are 
all present, while the fourth allele is likely to be another A but may be another B.

Using her expert judgement (taking into account the peak heights and background 
frequencies), suppose she assigns probabilities as to which alleles are present as follows:

P(AABC) =  0.9
P(ABBC) =  0.1

We note that given any four alleles the six possible genotype pairs into which they can be 
arranged are equally likely. Writing p and q for two constants in the ratio 9:1, Table 9 
identifies all combinations of two contributors that can result in either AABC or ABBC being
observed, and assigns probability p to each genotype pair containing alleles AABC, and q 
to each pair containing ABBC (taking into account factors of two for the two possible 
orderings of a heterozygote). The row sums (= column sums) specify the marginal 
genotype distribution, and equating the overall sum to one specifies p and q (12p + 12q = 
1; p/q = 9; hence p = 9/120, q = 1/120).
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First contributor Marginal

AA AB AC BB BC

S
e

co
n

d
 c

o
nt

ri
bu

to
r

AA 2p 2p

AB 4p 4q 4p+4q

AC 4p 2q 4p+2q

BB 2q 2q

BC 2p 4q 2p+4q

Marginal 2p 4p+4q 4p+2q 2q 2p+4q

Table 9: Joint genotype probabilities for two indistinguishable contributors in Example 4.

A B C

A 18q = 0.15 20q = 0.17 19q = 0.16

B 20q = 0.17 2q = 0.02 11q = 0.09

C 19q = 0.16 11q = 0.09 0

Table 10:  Marginal GPM corresponding to the final row (or column) of Table 9, using p = 9q and
(q = 1/120).

The GPM in Table 10 (restating the final row and column of Table 9) represents the 
probability distribution for the genotype of a contributor to the mixture: since the expert 
does not attempt to deconvolve the mixture, the GPMs are the same for each contributor. 
If searched against a database of GPMs, a non-zero LR would be returned for any GPM 
that assigns a non-zero probability to any of the genotypes AA, AB, AC, BB or BC. The LR 
computed using GPMs for two non-deconvolved mixtures measures the evidence for the 
proposition that the mixtures have a contributor in common, without specifying the 
genotype of the common contributor.

For example, the LR for the proposition that the major contributor in example 3 is one of 
the contributors to example 4 is obtained by using the GPMs of Table 7 and Table 10 in 
Theorem 1, which gives 0.085 /bA bB + 0.080 /bAbC which equals  16.5 in the special case 
that bA=bB=bC=0.1 .

 8 Conclusion
We propose computing LRs to evaluate poor-quality DNA evidence (due to low-template, 
degradation, and/or multiple donors) using a probability distribution for the genotype(s) of 
donor(s). While the donor genotypes are strictly nuisance variables and it is possible to 
compute LRs without inferring them, we see several advantages to explicitly using 
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genotype probability distributions for unknown or contested contributors.  Firstly, this is an 
intuitive quantity for which an expert can reasonably assign probabilities, thus taking 
advantage of their expert judgment.  Secondly, summarising the information in a complex 
epg in terms of one or more genotype distributions allows rapid searching of even complex
profiles against large databases, as well as the comparison of two complex profiles, 
perhaps from different crime scenes, to assess hypotheses about common contributors.  A
final advantage is that for an individual with a known genotype, probability distributions for 
the genotypes of their relatives are readily computed, allowing us to assess hypotheses 
about relatedness of contributors to different profiles even when one or both profiles are 
complex.  We believe that our approach can assist both in rapid identification of 
intelligence leads and in evaluating evidence within a judicial process.

Although the use of  “subjective” encoding based upon expert opinion may seem 
problematic, there is now a substantial literature on the elicitation of expert opinion in a 
subjective Bayesian methodology [17, 18]. Moreover the performance of experts can be 
tested in blind trials and through assessments of between-expert agreement. The expert 
can make conservative assessments, for example by assigning more weight to 
background frequencies for noisy profiles. Initially the benefits of the method will be in its 
use as an intelligence tool; providing additional leads to an investigation. New and 
historical epgs that could not be used conventionally can now be searched and stored to 
the advantage of ongoing and “cold case” investigations.  We envisage crime datasets 
made up of probabilistic epg encodings that would be a subset of, or complementary to, 
conventional national crime databases. Any possible matches suggested could then be 
subject to conventional examination. The use of the method within judicial systems would, 
we hope, follow. There are clear advantages in being able to give evidential strengths 
rather than a narrative along the lines of “could not be excluded as a donor to...”.
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A1 Theorem 1
Given epgs E1 and E2 and hypotheses 

ƞ1  : G1 and G2  represent the genotype of the same individual

ƞ0 : G1 and G2 represent the genotypes of two unrelated individuals

the likelihood ratio (LR) is

 LR(η1 , η0) =
P(E1, E2 | η1)

P(E1, E2 | η0)
(A1-0)

We write S1  and S 2  for the genotypes of the contributors to E1 and E2. Under η1  we have 
S1

=S2 and the numerator is obtained by summing over the two alleles of the genotype.  
Under η0 , we marginalize over the four alleles A i A j Ap Aq where S1

=Ai A j : i≤ j and

S2
=Ap Aq : p≤q .   Then

 LR =
∑
ij

P(E1 , E2 | S1
=S2

=A i A j ,η1) ⋅ P(S1
=S2

=Ai A j | η1)

∑
pqij

P(E1 , E2 | S1
=Ai A j , S

2
=A p Aq, η0) ⋅ P(S1

=A i A j , S
2
=Ap Aq | η0)

(A1-1)

We now make the following assumptions

1. In the numerator,  E1 and E2  are assumed independent given the underlying genotype
A i A j  so that P(E1 , E2 | S1

=S2
=Ai A j , η1) becomes P(E1 | S1=Ai A j)⋅P(E2 | S2=Ai A j) .

2. P(S1
=S2

=A i A j | η1)  is the background genotype probability B ij .

3. In the denominator P (E1 , E2 | S1 , S 2 ,η0) = P (E1 | S1=Ai A j)⋅P (E2 | S2=Ap Aq)  again 
assuming E1 and E2  are independent given the genotypes .

4. P(S1
=A i A j , S

2
=A p Aq | η0) = P(S1

=A i A j | η0)⋅P(S2
=A p Aq | S1

=A i A j ,η0) = Bij⋅Bpq | ij   
using the notation for B| ij  introduced in Section 6.

Then

 LR =
∑
ij

P(E1 | S1
=A i A j) ⋅ P(E2 | S2

=A i A j) ⋅ Bij

∑
ij [P(E1 | S1

=A i A j) ⋅ Bij ⋅ ∑
pq

P(E2 | S2
=A p Aq) ⋅ Bpq | ij]

(A1-2)

This equation contains terms of the form P(E | S=A i A j) . This is appropriate when 
considering explicit models of the generation of epgs from profiles. We now use Bayes' 
theorem to write the LR in terms of the form Gij = P (S=A i A j | E) , which correspond to 
entries of GPM matrices. By Bayes' theorem:

P(E | S=A i A j) = GijP(E)/Bij  where P(E) is the prior probability of the epg E . 
Substituting this expression into (A2-2) we get
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LR =

∑
ij

Gij
1 P(E1

)

Bij

⋅
Gij

2 P(E2
)

Bij

⋅ B ij

∑
ij

[Gij
1 P(E1

)

Bij

⋅ Bij ⋅ ∑
pq

G pq
2 P(E2

)

B pq

⋅ Bpq | ij]
And simplifying

 LR =

∑
ij

Gij
1
⋅Gij

2

B ij

∑
ij

[Gij
1

⋅ ∑
pq

Gpq
2 ⋅ Bpq | ij

Bpq
]

(A1-3)

If  S1  and S2  are independent then B pq| ij=Bpq ) and the denominator simplifies to unity 

(Since ∑
ij

Gij
1
=∑

ij

Gij
2
= 1 ), which establishes Theorem 1.

In the general case  B pq| ij≠Bpq  (A1-3) should be used.
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A2 Relatedness
In this section we derive formulae equivalents to Figure 1 section 4.

We define RelR(A p Aq)ij  to be the probability that an R-relative of an individual with 
genotype A p Aq  has genotype Ai A j .

The function RelR(A p Aq)ij is calculated on the following assumptions:

(a) Mendelian segregation with independent assortment. 

(b) Genes contributed by unknown individuals are drawn from the background allele 
probability vector b. (Ie HW Equilibrium)

A2.1 Degree 1

We consider first the parent-child relationship under these assumptions . We will show that
the GPMs for “Child of X” and “Parent of X” are the same.

A2.1.1 Child

We seek an expression for RelChild (A p Aq)ij (i.e. component (i, j) of the matrix representing
RelChild(A p Aq) ) or in words: “The probability that the child of an individual with genotype
A p Aq is A i A j ”

The child of an individual with genotype A p Aq  will inherit A p  or Aq , each with probability 
0.5. The inherited allele may be written as the vector2 (δip+δiq)/2

The other parent contributes an allele distributed according to the background probabilities
b. The matrix RelChild(A p Aq) is then a symmetric product of these allele vectors:

2 Where δijis the Kronecker delta symbol, defined to be equal to 1 if i= jand 0 otherwise.
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and it can be seen that the general term ((i,j) in the diagram) is

RelChild (A p Aq)ij =
(δ ip+δiq)

2
b j (A2-1)

A2.1.2 Parent

In the case of a parent there are two cases to consider: The parent contributed either A p or
Aq , with the other allele drawn from b. Each of these cases may be constructed as above,

and then averaged. (In the diagrams, arrows represent deductions, rather than gene flow).

RelParent (Ap Aq)ij =
1
2
(δip b j+ δiq b j) =

(δip+ δiq)

2
b j  (A2-2)

It can be seen the expressions for a parent and a child are identical, and we term both 
these relationships Degree 1 or D1 () .

A2.2 Degree n

We term an nth generation descendant or ancestor (i.e. (n-2) greats grandchild or 
grandparent) a Degree n relative Dn() . Applying the construction for degree 1 repeatedly 
yields
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RelDn(Ap Aq)ij =
(δip+δiq+(2n

−2)bi)

2n b j  (A2-3)

As special cases, we have the formulae for the D2 and D3 cases:

RelD2(A p Aq)ij =
(δip+δiq+2bi)

4
b j  (A2-4)

RelD3(A p Aq)ij =
(δip+δiq+6b i)

8
b j  (A2-5)

A2.3 Sibling

The full sibling relationship is the simplest example of a collateral bilineal relationship (the 
individuals have common ancestors via both parents), which may be constructed as 
follows:

 RelSib(A p Aq)ij =
1
2
(bi+δpi)⋅

1
2
(b j+δqj) (A2-6)

NB in this case adding the alternative term obtained by interchanging p and q is equivalent
to adding the symmetric term obtained by interchanging i and j, so it is omitted. This is not 
always true for bilineal relationships. 

In the general case where the profile is represented by the GPM G

RelSib (G)ij = ∑
pq

Gpq⋅
1
2
(bi+ δpi)⋅

1
2
(b j+ δqj)

which may be simplified to

RelSib (G)ij =
1
4
(bib j + bi∑

p

Gpj + b j∑
q

Giq + Gij)   (A2-7)

The LR for A p Aq and A r A s  being siblings (versus unrelated) is from Theorem 2)

which simplifies to
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 LR(Ap Aq , RelSib (A r A s)) =
1
8 [(1+

δpr

bp
)(1+

δqs

bq )+(1+
δqr

bq
)(1+

δps

bp
)] (A2-8)

This formula reproduces all seven cases given in Table (A2-1) below, in agreement with 
published formulae, e.g. [13] at p137, Table 4.10.

P1 P2 LR (Full Sibling/Unrelated)

xx xx (1+bx)
2
/4 bx

2

xx xy (1+bx)/ 4bx

xx yy 1/4

xx yz 1/ 4

xy xy (1+bx+by+2bxb y)/(8bxb y)

xy xz (1+2bx)/8bx

xy zw 1/4

Table (A2-1): Sibling Likelihood Ratio 

A2.4 Tables

Relationship Components of Rel(Ap Aq)ij Vector notation: GPM of relative, given GPM X 
with marginal x, background B=bT b

D1 (δip+ δ iq)b j /2 (xT b+ bT x)/2

Dn (δip+ δ iq+ (2n
−2)bi)b j /2

n
(xT b+ bT x+ (2n−2)B)/2n

Full Sibling (bi+ δpi)⋅(b j+ δqj)/4 (X+ xT b+ bT x+ B)/ 4

Table (A2-2): Relationship formulae

D1 Parent, Child

D2 Grandparent, Grandchild, Uncle, Nephew, Half-sibling

D3 Great-grandparent, Great-grandchild, Great-aunt, Great-niece, First Cousin

Table (A2-3):  Examples of relationships
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A3 Theorem 2 

Given an individual with GPM G , the GPM GR of a relative of that individual may be 
expressed as a function of G : GR

= R(G) where function R( ) depends on the particular 
relationship, e.g. we may have GR

= Child (G) , GR
= Sib(G) etc. 

We now show how the likelihood ratio may be expressed in terms of R().

We consider two GPMs G1  and G2   representing epgs E1 and E2 respectively. We 
consider the LR for the following hypotheses:

ηR  : the individual underlying G1  is an R-relative of the individual underlying G2 .

η0 : G1 and G2 come from unrelated individuals

Again we write S1  and S2  for the (unknown) genotypes of the contributors to E1 and E2. 
And  RelR(A pAq)ij  is defined as in Appendix A2. Then under ηR  the GPM for the relative
S1  is given by 

 R(G2
)ij = ∑

pq

G pq
2 RelR(A p Aq)ij (A3-1)

Proceeding as in A2 we define the likelihood ratio for a familial match

 LR =
P(E1 , E2 | ηR)

P(E1 , E2 | η0)
(A3-2)

First, marginalize both numerator and denominator over the exclusive and exhaustive set 
of alleles A p Aq A i A j where S1

=Ai A j : i≤ j and S2
=Ap Aq : p≤q  :

LR =
∑
pqij

P(E1 , E2 | S1
=Ai A j , S

2
=A p Aq , ηR) ⋅ P(S1

=A i A j , S
2
=A p Aq | ηR)

∑
pqij

P(E1 ,E2 | S1
=A i A j , S

2
=Ap Aq ,η0) ⋅ P(S1

=A i A j , S
2
=A p Aq | η0)

We proceed as in Appendix A1 with regard to the denominator.

In the numerator we have P(E1 , E2 | S1, S2 ,ηR) = P (E1 | S1, S2 ,ηR)⋅P (E2 | E1 , S1 , S2,ηR) . 
Since under ηR the sources of S1 and S2 are assumed to be related, it is not true that E1 is 
independent of S2 , nor that E2 is independent of S1 and E1 . However it is clear that if S1

were known, knowledge of S2 or E2 would not add any new information about E1 . Therefore
P(E1 | S1 , S2 ,ηR) = P(E1 | S1 ,ηR) and similarly P(E2 | E1 , S1, S2 ,ηR) = P (E2 | S2 , ηR) . Then

LR =
∑
pqij

P(E1 | S1=A i A j)⋅P(E2 | S2=A p Aq )⋅P (S1=Ai A j | S2=A pAq ,ηR)⋅P(S2=A pAq | ηR)

∑
pqij

P(E1 | S1=Ai A j)⋅P(E2 | S2=Ap Aq)⋅P(S2=A pAq | S1=A iA j ,η0)⋅P (S1=A iA j | η0 )

Noting that P (S 1=Ai A j | S 2=Ap Aq ,ηR) = RelR(A pAq)ij , and substituting in the background
probabilities:
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LR =
∑
pqij

P(E1 | S1
=A i A j) ⋅ P(E2 | S2

=A p Aq) ⋅ RelR(A p Aq)ij ⋅ B pq

∑
pqij

P(E1 | S1
=Ai A j) ⋅ P(E2 | S2

=A p Aq) ⋅ Bpq | ij ⋅ Bij

Again by Bayes' theorem we have P(E1 | S1
=Ai A j) = Gij

1 P (E)/Bij , and

P(E2 | S2
=A p Aq) = G pq

2 P(E)/B pq  and simplifying with the help of (A3-1) we have

 LR =

∑
ij [Gij

1
⋅ R(G2

)ij
Bij

]
∑
ij [Gij

1
⋅ ∑

pq

Gpq
2

⋅ Bpq | ij

Bpq
]

(A3-3)

Under the same assumption as Appendix A1 (i.e. HWE or an unconditional population 
model) we have

LR = ∑
ij

Gij
1
⋅R(G2

)ij
B ij

which establishes theorem 2. In the general case  B pq| ij≠Bpq  (A3-3) should be used.

A3.1 Example

As an example in the calculation of a LR for a familial relationship, consider a locus with 
alleles with STR repeat numbers (8, 9, 10, 11) with background frequencies (0.1, 0.2, 0.3, 
0.4) respectively. Alice has profile (8,F) and Bob has profile (8, 9). This corresponds to the 
following matrices (written for convenience in upper-triangular form). 

Alice=[
0.1 0.2 0.3 0.4

0 0 0
0 0

0
]; Bob=[

0 1 0 0
0 0 0

0 0
0
]; Background=[

0.01 0.04 0.06 0.08
0.04 0.12 0.16

0.09 0.24
0.16

];
Suppose we wish to find the LR for the relationship “Alice is a sibling of Bob” (vs “Alice and
Bob are unrelated”) We first calculate the matrix for “Sibling of Bob” from Equation A2-6

Sib(Bob)ij = ∑
pq

Bobpq
1
2
(b i+δpi)⋅

1
2
(b j+δqj)

Since the only element of Bob pq≠0  is Bob10=1  we find

Sib(Bob)ij =
1
4
(bi+δ0 i)⋅(b j+δ1 j) and therefore

Sib(Bob)00 =
1
4
(b0+δ00)⋅(b0+δ10) =

1
4
(0.1+1)⋅(0.1+0) = 0.0275

Sib(Bob)01 =
1
4
(b0+δ00)⋅(b1+δ11) =

1
4

(0.1+1)⋅(0.2+1) = 0.3300  etc,

giving the components of the  matrix shown below. 

Sib(Bob) = [
0.0275 0.3300 0.0825 0.1100
0.0050 0.0600 0.0150 0.0200
0.0075 0.0900 0.0225 0.0300
0.0100 0.1200 0.0300 0.0400

] or [
0.0275 0.3350 0.0900 0.1200

0.0600 0.1050 0.1400
0.0225 0.0600

0.0400
]
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The LR for a sibling relationship between Alice and Bob is obtained by matching “Alice” vs 
“Sibling of Bob” using Equation (5):

∑ [
0.1 0.2 0.3 0.4

0 0 0
0 0

0
] × [

0.0275 0.3350 0.0900 0.1200
0.0600 0.1050 0.1400

0.0225 0.0600
0.0400

]
[
0.01 0.04 0.06 0.08

0.04 0.12 0.16
0.09 0.24

0.16
]

The result of which is

0.1×0.0275
0.01

+
0.2×0.3350

0.04
+

0.3×0.09
0.06

+
0.4×0.12

0.08
= 0.275+1.675+0.45+0.6 = 3

 9 A4 GPMDNA Computer Program
The first two authors have developed a computer program GPMDNA to calculate LRs 
using the method described in this paper.  GPMDNA allows the expert to encode an epg 
as a single GPM for a major contributor, or as two marginal GPMs for a major and a minor 
as discussed in the main text. An expert using GPMDNA may also encode an 
N-contributor GPM as 2N allele vectors, each normalised to 1 and representing the 
probability distribution of one allele.  The allele vectors are used by GPMDNA to produce 
marginal GPMs for contributors to the mixture.  Encoding GPMs as products of allele 
vectors was used in Section 4 for propagating an individual's GPM to his/her relatives.  
Using allele vectors for interpreting an epg is not completely general, because it implies 
that allele assignments are independent, but we have had considerable experience of this 
approach and found it be very flexible, permitting good approximations for a wide range of 
judgements that an expert might wish make. 

We introduce a shorthand notation to specify allele vectors.  Any probability not explicitly 
assigned by the expert is assumed by GPMDNA to be a multiple of background 
probabilities (denoted '@B'), chosen so that each allele vector is normalised to 1. The B 
values can be supplied by the software so the expert does not need to know them at the 
time of encoding.  We now illustrate the allele vector encoding and notation using the 
examples in the main text, assuming a locus with STR alleles 11, 12, ... and associated 
background probabilities b11 ,b12, ....

Example 1 (See Section 7.2.1)

Having decided there is a single contributor the expert designates the two allele vectors u 
and v, and the program generates the components as shown in Table A4-1. So, for 
example, in case (ii) the expert enters  the shorthand notation “11” and “11@0.4/12@0.6” 
and the program populates the cells of the two vectors and subsequently the cells of the 
GPM.
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STR allele

Case Allele 
vector

11 12 13 GPMDNA designation

(i) u 1 0 0 11

v b11 b12 b13 F

(ii) u 1 0 0 11

v 0.4 0.6 0 11@0.4/12@0.6

(iii) u 1 0 0 11

v 0.2+0.2b11  0.6+0.2 b12  0+0.2 b13  11@0.22/12@0.64/13@0.14

Table A4-1: Allele vector encoding of Example 1. The pair of rows labelled (i), (ii) or (iii) 
correspond to the row of Table 1 with the same label. The columns show the allele 
probability assignments explicitly and in GPMDNA notation. In each case, vector u 
indicates that allele 11 is certainly present, while v specifies probabilities for the other 
allele. In (i) 'F' indicates that background probabilities are assigned to all alleles. In (ii) 
probabilities of 0.4 and 0.6 are assigned to 11 and 12, corresponding to Γ=0.4  in Example 
1. 

Example 2 (See section 7.2.2)

Having decided there are two contributors the expert must designate four alleles : u, v, w, 
z. In this case the expert attempts to deconvolve the major and minor, and assigns u, v to 
the major and w, z to the minor.

STR allele

Contri
butor

Allele 
vector

11 12 13 14 GPMDNA designation

M
aj

o
r

u 1 0 0 0 11

v 0 1 0 0 12

M
in

o
r

w 0 0 1 0 13

z (i) 0.33 0.33 0.33 0 11/12/13@0.33

z (ii) b11

b11+ b12+ b13

b12

b11+b12+b13

b13

b11+b12+b13

0 11/12/13@B

z (iii) b11

b11+b12

b12

b11+b12

0 0 11/12@B

Table A4-2: GPMDNA encoding of Example 2 is shown in the rows down to and including 
z(i). Also shown are two alternative codings of vector z that take the background 
probabilities into account for the fourth allele, either allowing for it to be any of alleles 11, 
12 and 13 (vector z(ii), coding “11/12/13@B”) or only one of 11 or 12 (vector z(iii) coding 
“11/12@B”).
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The 4-allele GPM (shown in Table 3) may be constructed automatically as follows. The 
GPM for the major is formed from the allele vectors u and v as in Equation (2), and we will 
write this as

 [uv ] = (uT v + vTu)/2

Similarly the minor is [wz ] . We will always permute the vectors for each major or minor 
component of a profile because we can not distinguish the maternal and paternal alleles. 
When there is uncertainty about which contributor an allele belongs to, we must perform 
additional permutations (see examples 3, 4).  In this case no more permutations are 
needed and the 4-allele GPM is just the outer product  A= [uv ]⊗[wz] . In components
A ijkl = (ui v j+v iu j)(w k zl+zkwl)/4 . The marginals for the major and minor (Tables 4 and 5 ) 

can be got from A , or directly as [uv ]  and  [wz ]  respectively.

Example 3 (See section 7.2.2)

In example 3 the GPMDNA designation is straightforward, shown in Table A4-3.

STR repeat number

Contributor Allele vector 11 12 13 14 GPMDNA designation

Major u 1 0 0 0 11

Major/
Minor

v 0 1 0 0 12

w 0 0 1 0 13

Minor z 0 0 0 1 14

TableA4-3: GPMDNA encoding of Example 3

Since the expert has flagged alleles u and v as belonging to either the major or the minor 
we must form all possible permutations to get the 4-allele GPM :
([uv ]⊗ [wz ]+ [uw ]⊗ [vz ])/2  Alternatively we can calculate the 2-allele marginal GPMs 
directly: ([uv ]+ [uw ] )/2  and ([wz ]+ [vz] )/2  for the major and minor respectively. These 
GPMs are shown in Tables 6, 7 and 8.

Example 4 (See section 7.2.2)

In example 4 there is no attempt to assign alleles to major or minor, so we have:
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STR repeat number

Allele 
vector

11 12 13 GPMDNA designation

u 1 0 0 11

v 0 1 0 12

w 0 0 1 13

z 0.9 0.1 0 11@0.9/12@0.1

Table A4-4: GPMDNA encoding of Example 4.

Again we can form the 4-allele GMP of Table 9 by permutation if we need it:
([uv ]⊗[wz ] + [uw ]⊗[ vz] + [uz]⊗ [ vw] + [vw ]⊗ [uz] + [ vz]⊗[uw ] + [wz ]⊗[uv ]) / 6  while 
forming the permuted product ([uv ]+ [uw ]+ [uz ]+ [vw ]+ [ vz]+ [wz ])/6  yields the marginal of
Table 10 directly. 

GPMDNA Software

The computer program GPMDNA can manage large datasets (tested to over 1 million)  
and conduct “one to one”, “one to many” and “many to many” comparisons . It can store 
and compare both probabilistic and conventional profiles and it presents results for direct 
and familial relationships simultaneously. The program, particularly when running on 
computers with GPGPU cards, is fast enough to allow real time, interactive, investigations 
of DNA evidence. 

The software may be downloaded from: https://github.com/GPMSoftware/GPM.git where 
the open source licence is described.
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