2,600 research outputs found
Noncooperative algorithms in self-assembly
We show the first non-trivial positive algorithmic results (i.e. programs
whose output is larger than their size), in a model of self-assembly that has
so far resisted many attempts of formal analysis or programming: the planar
non-cooperative variant of Winfree's abstract Tile Assembly Model.
This model has been the center of several open problems and conjectures in
the last fifteen years, and the first fully general results on its
computational power were only proven recently (SODA 2014). These results, as
well as ours, exemplify the intricate connections between computation and
geometry that can occur in self-assembly.
In this model, tiles can stick to an existing assembly as soon as one of
their sides matches the existing assembly. This feature contrasts with the
general cooperative model, where it can be required that tiles match on
\emph{several} of their sides in order to bind.
In order to describe our algorithms, we also introduce a generalization of
regular expressions called Baggins expressions. Finally, we compare this model
to other automata-theoretic models.Comment: A few bug fixes and typo correction
Cyclotrons as Drivers for Precision Neutrino Measurements
As we enter the age of precision measurement in neutrino physics, improved
flux sources are required. These must have a well-defined flavor content with
energies in ranges where backgrounds are low and cross section knowledge is
high. Very few sources of neutrinos can meet these requirements. However,
pion/muon and isotope decay-at-rest sources qualify. The ideal drivers for
decay-at-rest sources are cyclotron accelerators, which are compact and
relatively inexpensive. This paper describes a scheme to produce decay-at-rest
sources driven by such cyclotrons, developed within the DAEdALUS program.
Examples of the value of the high precision beams for pursuing Beyond Standard
Model interactions are reviewed. New results on a combined DAEdALUS--Hyper-K
search for CP-violation that achieve errors on the mixing matrix parameter of 4
degrees to 12 degrees are presented.Comment: This paper was invited by the journal Advances in High Energy Physics
for their upcoming special issue on "Neutrino Masses and Oscillations," which
will be published on the 100th anniversary of Pontecorvo's birt
Old Glory and the G. A. R. : March Song
https://digitalcommons.library.umaine.edu/mmb-vp/4395/thumbnail.jp
Verification in Staged Tile Self-Assembly
We prove the unique assembly and unique shape verification problems,
benchmark measures of self-assembly model power, are
-hard and contained in (and in
for staged systems with stages). En route,
we prove that unique shape verification problem in the 2HAM is
-complete.Comment: An abstract version will appear in the proceedings of UCNC 201
Surface Flaw Detection with Ferromagnetic Resonance Probes
Small ferromagnetic resonators have been shown to provide effective electromagnetic detectors for surface flaws in magnetic and nonmagnetic metals. As such a resonator is moved along \u27the surface of a test piece it experiences a frequency shift when it passes over a flaw. lwo detection mechanisms are present: (1) an eddy current effect (2) a perturbation of the dc magnetic bias field used to tune the resonator. Results are given for experiments performed on machined slots in aluminum, titanium and steel and on tightly closed fatigue cracks in titanium. Results are also presented for some measurements on titanium aircraft fasteners
- …