1,277 research outputs found

    Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin

    Get PDF
    The eukaryotic spindle assembly checkpoint (SAC) delays anaphase in the presence of chromosome attachment errors. Bub3 has been reported to be required for SAC activity in all eukaryotes examined so far. We find that Bub3, unlike its binding partner Bub1, is not essential for the SAC in fission yeast. As Bub3 is needed for the efficient kinetochore localization of Bub1, and of Mad1, Mad2 and Mad3, this implies that most SAC proteins do not need to be enriched at the kinetochores for the SAC to function. We find that Bub3 is also dispensable for shugoshin localization to the centromeres, which is the second known function of Bub1. Instead, Bub3, together with Bub1, has a specific function in promoting the conversion from chromosome mono-orientation to bi-orientation

    Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials

    Get PDF
    Objective: To evaluate differences in downstream testing, coronary revascularisation, and clinical outcomes following non-invasive diagnostic modalities used to detect coronary artery disease. Design: Systematic review and network meta-analysis. Data sources: Medline, Medline in process, Embase, Cochrane Library for clinical trials, PubMed, Web of Science, SCOPUS, WHO International Clinical Trials Registry Platform, and Clinicaltrials.gov. Eligibility criteria for selecting studies: Diagnostic randomised controlled trials comparing non-invasive diagnostic modalities in patients presenting with symptoms suggestive of low risk acute coronary syndrome or stable coronary artery disease. Data synthesis: A random effects network meta-analysis synthesised available evidence from trials evaluating the effect of non-invasive diagnostic modalities on downstream testing and patient oriented outcomes in patients with suspected coronary artery disease. Modalities included exercise electrocardiograms, stress echocardiography, single photon emission computed tomography-myocardial perfusion imaging, real time myocardial contrast echocardiography, coronary computed tomographic angiography, and cardiovascular magnetic resonance. Unpublished outcome data were obtained from 11 trials. Results: 18 trials of patients with low risk acute coronary syndrome (n=11 329) and 12 trials of those with suspected stable coronary artery disease (n=22 062) were included. Among patients with low risk acute coronary syndrome, stress echocardiography, cardiovascular magnetic resonance, and exercise electrocardiograms resulted in fewer invasive referrals for coronary angiography than coronary computed tomographic angiography (odds ratio 0.28 (95% confidence interval 0.14 to 0.57), 0.32 (0.15 to 0.71), and 0.53 (0.28 to 1.00), respectively). There was no effect on the subsequent risk of myocardial infarction, but estimates were imprecise. Heterogeneity and inconsistency were low. In patients with suspected stable coronary artery disease, an initial diagnostic strategy of stress echocardiography or single photon emission computed tomography-myocardial perfusion imaging resulted in fewer downstream tests than coronary computed tomographic angiography (0.24 (0.08 to 0.74) and 0.57 (0.37 to 0.87), respectively). However, exercise electrocardiograms yielded the highest downstream testing rate. Estimates for death and myocardial infarction were imprecise without clear discrimination between strategies. Conclusions: For patients with low risk acute coronary syndrome, an initial diagnostic strategy of stress echocardiography or cardiovascular magnetic resonance is associated with fewer referrals for invasive coronary angiography and revascularisation procedures than non-invasive anatomical testing, without apparent impact on the future risk of myocardial infarction. For suspected stable coronary artery disease, there was no clear discrimination between diagnostic strategies regarding the subsequent need for invasive coronary angiography, and differences in the risk of myocardial infarction cannot be ruled out. Systematic review registration: PROSPERO registry no CRD42016049442

    Acute coronary syndrome in patients younger than 30 years--aetiologies, baseline characteristics and long-term clinical outcome.

    Get PDF
    Coronary atherosclerosis begins early in life, but acute coronary syndromes in adults aged <30 years are exceptional. We aimed to investigate the rate of occurrence, clinical and angiographic characteristics, and long-term clinical outcome of acute coronary syndrome (ACS) in young patients who were referred to two Swiss hospitals. From 1994 to 2010, data on all patients with ACS aged <30 years were retrospectively retrieved from our database and the patients were contacted by phone or physician's visit. Baseline, lesion and procedural characteristics, and clinical outcome were compared between patients in whom an underlying atypical aetiology was found (non-ATS group; ATS: atherosclerosis) and patients in whom no such aetiology was detected (ATS group). The clinical endpoint was freedom from any major adverse cardiac event (MACE) during follow-up. A total of 27 young patients with ACS aged <30 years were admitted during the study period. They accounted for 0.05% of all coronary angiograms performed. Mean patient age was 26.8 ± 3.5 years and 22 patients (81%) were men. Current smoking (81%) and dyslipidaemia (59%) were the most frequent risk factors. Typical chest pain (n = 23; 85%) and ST-segment elevation myocardial infarction (STEMI; n = 18 [67%]) were most often found. The ATS group consisted of 17 patients (63%) and the non-ATS group of 10 patients (37%). Hereditary thrombophilia was the most frequently encountered atypical aetiology (n = 4; 15%). At 5 years, mortality and MACE rate were 7% and 19%, respectively. ACS in young patients is an uncommon condition with a variety of possible aetiologies and distinct risk factors. In-hospital and 5-year clinical outcome is satisfactory

    Hospital revascularisation capability and quality of care after an acute coronary syndrome in Switzerland.

    Get PDF
    BACKGROUND: Patients with acute coronary syndrome (ACS) transferred to regional nonacademic hospitals after percutaneous coronary intervention (PCI) may receive fewer preventive interventions than patients who remain in university hospitals. We aimed at comparing hospitals with and without PCI facilities regarding guidelines-recommended secondary prevention interventions after an ACS. METHODS: We studied patients with ACS admitted to a university hospital with PCI facilities in Switzerland, and either transferred within 48 hours to regional nonacademic hospitals without PCI facilities or directly discharged from the university hospital. We measured prescription rates of evidence-based recommended therapies after ACS including reasons for nonprescription of aspirin, statins, β-blockers, angiotensin converting-enzyme inhibitors (ACEI) / angiotensin II receptor blockers (ARB), along with cardiac rehabilitation attendance and delivery of a smoking cessation intervention. RESULTS: Overall, 720 patients with ACS were enrolled; 541 (75.1%) were discharged from the hospital with PCI facilities, 179 (24.9%) were transferred to hospitals without PCI facilities. Concomitant prescription of aspirin, β-blockers, ACEI/ARB and statins at discharge was similar in hospitals with and without PCI facilities, reaching 83.9% and 85.5%, respectively (p = 0.62). Attendance at cardiac rehabilitation reached 55.5% for the hospital with PCI facilities and 65.7% for hospitals without PCI facilities (p = 0.02). In-hospital smoking cessation interventions were delivered to 70.8% patients exclusively at the hospital with PCI facilities. CONCLUSION: Quality of care for patients with ACS discharged from hospitals without PCI facilities was similar to that of patients directly discharged from the hospital with PCI facilities, except for in-hospital smoking cessation counselling and cardiac rehabilitation attendance

    Repositionable Versus Balloon-Expandable Devices for Transcatheter Aortic Valve Implantation in Patients With Aortic Stenosis.

    Get PDF
    The safety and effectiveness of the fully repositionable LOTUS valve system as compared with the balloon-expandable Edwards SAPIEN 3 prosthesis for the treatment of aortic stenosis has not been evaluated to date. All patients undergoing transcatheter aortic valve implantation with the Edwards SAPIEN 3 or the LOTUS valve system were included into the Swiss Transcatheter Aortic Valve Implantation Registry. An adjusted analysis was performed to compare the early clinical safety outcome according to the Valve Academic Research Consortium-2 definition. Between February 2014 and September 2015, 140 and 815 patients were treated with the LOTUS and the Edwards SAPIEN 3 valve, respectively. There was no difference in crude and adjusted analyses of the early safety outcome between patients treated with LOTUS (14.3%) and those treated with Edwards SAPIEN 3 (14.6%) (crude hazard ratio, 0.97; 95% CI, 0.61-1.56 [P=0.915]; adjusted hazard ratio, 1.03; 95% CI, 0.64-1.67 [P=0.909]). More than mild aortic regurgitation was <2% for both devices. A total of 34.3% of patients treated with LOTUS and 14.1% of patients treated with Edwards SAPIEN 3 required a permanent pacemaker (HR, 2.76; 95% CI, 1.97-3.87 [P<0.001]). The repositionable LOTUS valve system and the balloon-expandable Edwards SAPIEN 3 prosthesis appeared comparable in regard to the Valve Academic Research Consortium-2 early safety outcome, and the rates of more than mild aortic regurgitation were exceedingly low for both devices. The need for new permanent pacemaker implantation was more frequent among patients treated with the LOTUS valve

    Uptake and efficacy of a systematic intensive smoking cessation intervention using motivational interviewing for smokers hospitalised for an acute coronary syndrome: a multicentre before-after study with parallel group comparisons.

    Get PDF
    To compare the efficacy of a proactive approach with a reactive approach to offer intensive smoking cessation intervention using motivational interviewing (MI). Before-after comparison in 2 academic hospitals with parallel comparisons in 2 control hospitals. Academic hospitals in Switzerland. Smokers hospitalised for an acute coronary syndrome (ACS). In the intervention hospitals during the intervention phase, a resident physician trained in MI systematically offered counselling to all smokers admitted for ACS, followed by 4 telephone counselling sessions over 2 months by a nurse trained in MI. In the observation phase, the in-hospital intervention was offered only to patients whose clinicians requested a smoking cessation intervention. In the control hospitals, no intensive smoking cessation intervention was offered. The primary outcome was 1 week smoking abstinence (point prevalence) at 12 months. Secondary outcomes were the number of smokers who received the in-hospital smoking cessation intervention and the duration of the intervention. In the intervention centres during the intervention phase, 87% of smokers (N=193/225) received a smoking cessation intervention compared to 22% in the observational phase (p<0.001). Median duration of counselling was 50 min. During the intervention phase, 78% received a phone follow-up for a median total duration of 42 min in 4 sessions. Prescription of nicotine replacement therapy at discharge increased from 18% to 58% in the intervention phase (risk ratio (RR): 3.3 (95% CI 2.4 to 4.3; p≤0.001). Smoking cessation at 12-month increased from 43% to 51% comparing the observation and intervention phases (RR=1.20, 95% CI 0.98 to 1.46; p=0.08; 97% with outcome assessment). In the control hospitals, the RR for quitting was 1.02 (95% CI 0.84 to 1.25; p=0.8, 92% with outcome assessment). A proactive strategy offering intensive smoking cessation intervention based on MI to all smokers hospitalised for ACS significantly increases the uptake of smoking cessation counselling and might increase smoking abstinence at 12 months

    Enoxaparin for primary thromboprophylaxis in ambulatory patients with coronavirus disease-2019 (the OVID study): a structured summary of a study protocol for a randomized controlled trial.

    Get PDF
    The OVID study will demonstrate whether prophylactic-dose enoxaparin improves survival and reduces hospitalizations in symptomatic ambulatory patients aged 50 or older diagnosed with COVID-19, a novel viral disease characterized by severe systemic, pulmonary, and vessel inflammation and coagulation activation. The OVID study is conducted as a multicentre open-label superiority randomised controlled trial. Inclusion Criteria 1. Signed patient informed consent after being fully informed about the study's background. 2. Patients aged 50 years or older with a positive test for SARS-CoV2 in the past 5 days and eligible for ambulatory treatment. 3. Presence of respiratory symptoms (i.e. cough, sore throat, or shortness of breath) or body temperature >37.5° C. 4. Ability of the patient to travel to the study centre by private transportation, performed either by an accompanying person from the same household or by the patient themselves 5. Ability to comply with standard hygiene requirements at the time of in-hospital visit, including a face mask and hand disinfectant. 6. Ability to walk from car to study centre or reach it by wheelchair transport with the help of an accompanying person from the same household also complying with standard hygiene requirements. 7. Ability to self-administer prefilled enoxaparin injections after instructions received at the study centre or availability of a person living with the patient to administer enoxaparin. Exclusion Criteria 1. Any acute or chronic condition posing an indication for anticoagulant treatment, e.g. atrial fibrillation, prior venous thromboembolism (VTE), acute confirmed symptomatic VTE, acute coronary syndrome. 2. Anticoagulant thromboprophylaxis deemed necessary in view of the patient's history, comorbidity or predisposing strong risk factors for thrombosis: a. Any of the following events occurring in the prior 30 days: fracture of lower limb, hospitalization for heart failure, hip/knee replacement, major trauma, spinal cord injury, stroke, b. previous VTE, c. histologically confirmed malignancy, which was diagnosed or treated (surgery, chemotherapy, radiotherapy) in the past 6 months, or recurrent, or metastatic, or inoperable. 3. Any clinically relevant bleeding (defined as bleeding requiring hospitalization, transfusion, surgical intervention, invasive procedures, occurring in a critical anatomical site, or causing disability) within 30 days prior to randomization or sign of acute bleeding. 4. Intracerebral bleeding at any time in the past or signs/symptoms consistent with acute intracranial haemorrhage. 5. Haemoglobin <8 g/dL and platelet count <50 x 10 <sup>9</sup> cells/L confirmed by recent laboratory test (<90 days). 6. Subjects with any known coagulopathy or bleeding diathesis, including known significant liver disease associated with coagulopathy. 7. Severe renal insufficiency (baseline creatinine clearance <30 mL/min calculated using the Cockcroft-Gault formula) confirmed by recent laboratory test (<90 days). 8. Contraindications to enoxaparin therapy, including prior heparin-induced thrombocytopenia and known hypersensitivity. 9. Current use of dual antiplatelet therapy. 10. Participation in other interventional studies over the past 30 days. 11. Non-compliance or inability to adhere to treatment or lack of a family environment or support system for home treatment. 12. Cognitive impairment and/or inability to understand information provided in the study information. Patient enrolment will take place at seven Swiss centres, including five university hospitals and two large cantonal hospitals. Patients randomized to the intervention group will receive subcutaneous enoxaparin at the recommended dose of 4,000 IU anti-Xa activity (40 mg/0.4 ml) once daily for 14 days. Patients randomized to the comparator group will receive no anticoagulation. Primary outcome: a composite of any hospitalization or all-cause death occurring within 30 days of randomization. (i) a composite of cardiovascular events, including deep vein thrombosis (including catheter-associated), pulmonary embolism, myocardial infarction/myocarditis, arterial ischemia including mesenteric and extremities, acute splanchnic vein thrombosis, or ischemic stroke within 14 days, 30 days, and 90 days of randomization; (ii) each component of the primary efficacy outcome, within 14 days, 30 days, and 90 days of randomization; (iii) net clinical benefit (accounting for the primary efficacy outcome, composite cardiovascular events, and major bleeding), within 14 days, 30 days, and 90 days of enrolment; (iv) primary efficacy outcome, within 14 days, and 90 days of enrolment; (v) disseminated intravascular coagulation (ISTH criteria, in-hospital diagnosis) within 14 days, 30 days, and 90 days of enrolment. Patients will undergo block stratified randomization (by age: 50-70 vs. >70 years; and by study centre) with a randomization ratio of 1:1 with block sizes varying between 4 and 8. Randomization will be performed after the signature of the informed consent for participation and the verification of the eligibility criteria using the electronic data capture software (REDCAP, Vanderbilt University, v9.1.24). In this open-label study, no blinding procedures will be used. The sample size calculation is based on the parameters α = 0.05 (2-sided), power: 1-β = 0.8, event rate in experimental group, pexp = 0.09 and event rate in control group, pcon = 0.15. The resulting total sample size is 920. To account for potential dropouts, the total sample size was fixed to 1000 with 500 patients in the intervention group and 500 in the control group. Protocol version 1.0, 14 April 2020. Protocol version 3.0, 18 May 2020 Recruiting start date: June 2020. Last Patient Last Visit: March 2021. ClinicalTrials.gov Identifier: NCT04400799 First Posted: May 26, 2020 Last Update Posted: July 16, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol
    corecore