11,613 research outputs found
Moorean Absurdities and Iterated Beliefs
Published in Journal of Philosophical Research, 2007, 32, 144-168. https://doi.org/10.5840/jpr20073236</p
Thereās nothing to beat a backward clock: A rejoinder to Adams, Barker and Clarke
Neil Sinhababu and I presented Backward Clock, an original counterexample to Robert Nozickās truth-tracking analysis of propositional knowledge. Fred Adams, John Barker and Murray Clarke argue that Backward Clock is no such counterexample. Their argument fails to nullify Backward Clock which also shows that other tracking analyses, such as Dretskeās and one that Adams et al. may well have in mind, are inadequate
An ICT Supported Sociocultural Approach to Improve the Teaching of Physics.
In many countries there is evidence of the international educational movement
toward more student centred and technology supported teaching as a way to better
prepare students for the future. This has been the focus in Vietnam, for example,
since the education reform agenda developed in 2000, but the little evidence that
there is seems to indicate that teaching remains largely didactic and teacher centred.
This research is a response to the Vietnamese context, and consists of the
theorization, development and implementation of a model which integrates student
centred pedagogies with information and communication technologies. The data
collected related to the implementation of the model, from both the teacher and
the students, suggests that this may be a helpful way for teachers to move toward a
more student centred pedagogy which is supported by available technologies
The Backward Clock, Truth-Tracking, and Safety
We present Backward Clock, an original counterexample to Robert Nozickās truth-tracking analysis of propositional knowledge, which works differently from other putative counterexamples and avoids objections to which they are vulnerable. We then argue that four ways of analysing knowledge in terms of safety, including Duncan Pritchardās, cannot withstand Backward Clock either
Continuous phase amplification with a Sagnac interferometer
We describe a weak value inspired phase amplification technique in a Sagnac
interferometer. We monitor the relative phase between two paths of a slightly
misaligned interferometer by measuring the average position of a split-Gaussian
mode in the dark port. Although we monitor only the dark port, we show that the
signal varies linearly with phase and that we can obtain similar sensitivity to
balanced homodyne detection. We derive the source of the amplification both
with classical wave optics and as an inverse weak value.Comment: 5 pages, 4 figures, previously submitted for publicatio
Mechanisms of degassing at Nevado del Ruiz volcano, Colombia
Author Posting. Ā© Geological Society, 2003. This article is posted here by permission of Geological Society for personal use, not for redistribution. The definitive version was published in Journal of the Geological Society 160 (2003): 507-521, doi:10.1144/0016-764902-028.Nevado del Ruiz volcano is an andesite stratovolcano located in the northern Andes of Colombia. The volcano erupted on 11 September 1985, 13 November 1985, and 1 September 1989. The last two eruptions emitted juvenile solid material. This paper examines the volatile and light lithophile trace element contents of melt inclusions and matrix glasses from this juvenile material, and proposes a model for degassing within the volcano. Major element distributions in the glasses show two evolutionary trends, with subsidiary points that lie between the two trends. The data suggest the existence of two separate magmas, which have interacted, mingled, and mixed during their ascent and eruption. Water contents in melt inclusions, as determined by secondary ionization mass spectrometric analysis, are generally low, averaging between 1.6 and 3.3 wt.%. Halogen concentrations in the glasses range from 400 to 1200 ppm for fluorine and from 1100 to 1500 ppm for chlorine. Sulphur contents are low, not exceeding 500 ppm, with most glasses containing <200 ppm. Lithium concentrations range from 20 to 40 ppm, beryllium from 1.5 to 2 ppm, and boron exhibits high variability from 30 to 100 ppm. The only significant difference between melt inclusions and matrix glasses is for water, with matrix glasses having significantly lower concentrations (<0.5 wt.%) than the melt inclusions. The generally elevated concentrations of boron in the magma may be a consequence of enrichment in the source region of the magma, i.e. by subduction of altered oceanic crust and/or sediments. Yet the large degree of boron heterogeneity in both melt inclusions and matrix glasses necessitates subsequent addition of boron at shallower depths as well, by the assimilation of crustal sedimentary rocks or by interaction with hydrothermal fluids. Evidence for pre-eruptive magma emplacement at shallow levels is provided by (1) anhydrous mineral assemblages of plagioclase and pyroxene, (2) high silica contents of glasses, and (3) low water contents in melt inclusions. When combined, these observations suggest a period of magma residence at shallow depths, probably <3 km beneath the summit of the volcano. A multistage model of magma transport and degassing involves alternating periods of magma ascent and magma ponding. Initially, volatile-bearing magma ascends from depths of 9ā15 km, driven by buoyancy. During decompression, the magma loses gas, particularly CO2 and sulphur. The magma eventually ponds at its neutral buoyancy level. At this point, the gas-saturated magma cools and crystallizes, thereby liberating gas under isobaric conditions. As a result, CO2 is depleted from the magma whereas H2O and SiO2 are enriched. The H2O enrichment is caused by its increased solubility in the magma as CO2 is degassed, whereas SiO2 is enriched by fractional crystallization. The density of the magma decreases as the level of dissolved H2O increases, eventually causing the magma to become buoyant once more and to continue its ascent, either to erupt or to freeze at shallow depths.This work was funded with grants to J.S. by the Natural Sciences
and Engineering Research Council of Canada and by the Fonds pour la
formation de chercheurs et lāaide a` la recherche (QueĀ“bec)
Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.
Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th) century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth
- ā¦