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Continuous phase amplification with a Sagnac interferometer

David J. Starling, P. Ben Dixon, Nathan S. Williams, Andrew N. Jordan, and John C. Howell
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

(Received 26 October 2009; published 8 July 2010)

We describe a phase-amplification technique using a Sagnac interferometer. We monitor the relative phase
between two paths of a precisely misaligned interferometer by measuring the average position of a split-Gaussian
mode in the dark port. Although we monitor only the dark port, we show that the signal varies linearly with
phase and that we can obtain similar sensitivity to balanced homodyne detection. We derive the source of the
amplification using classical wave optics.

DOI: 10.1103/PhysRevA.82.011802 PACS number(s): 42.25.Hz, 42.60.Mi, 42.87.Bg, 07.60.Ly

Introduction. Phase measurements using coherent light
sources continue to be of great interest in classical optics
[1–5]. Not surprisingly, many advances in phase measurement
techniques have been made since the introduction of the
laser. For instance, Caves emphasized how the signal-to-noise
ratio (SNR) of a phase measurement can be improved by
using a squeezed vacuum state in the dark input port of an
interferometer [6]. Related advances in this area include the
use of other nonclassical states of light such as Fock states [7]
or the use of phase-estimation techniques [8] which approach
the Heisenberg limit in phase sensitivity [9]. Unfortunately,
these states of light tend to be weak and very sensitive to
losses, in effect reducing the SNR of a phase measurement. As
a result, the use of coherent light sources has dominated the
field of precision metrology [10,11] where the phase sensitivity
scales as 1/

√
N rad, where N is the average number of photons

used in the measurement.
In this paper, we show that it is possible to make a mea-

surement of phase with the same SNR as balanced homodyne
detection, yet only the light in the dark port is measured. We
use a coherent light source with a split detector in a Sagnac
interferometer and show that the signal of a phase measurement
is amplified. Due to the large reduction of the intensity at the
detector, we can in principle use a low-cost detector with a low
saturation intensity and still obtain significantly higher phase
sensitivity when compared to that obtained using a balanced
homodyne detector with the same total incident intensity. This
method may improve the sensitivity of high-power balanced
homodyne phase measurements.

We derive our results using a classical wave description but
point out here that a quantum treatment which uses a similar
formalism to that presented in Refs. [11,12] is also valid.

Theory. Consider a coherent light source with a Gaussian
amplitude profile entering the input port of a Sagnac
interferometer, as shown in Fig. 1. The interferometer is
purposely misaligned using a piezo-actuated mirror such that
the two paths experience opposite deflections. The transverse
momentum shift imparted by the mirror is labeled as k. A
relative phase shift φ can be induced between the two light
paths (clockwise and counterclockwise) in the interferometer.

We model the electric field propagation using standard
matrix methods in the paraxial approximation. We can then
write the input electric field amplitude as

Ein = (E0e
−x2/4σ 2

0)T , (1)

where σ is defined as the Gaussian beam radius. The first
position in the column vector denotes port 1 (see Fig. 1) of the
beam splitter and the second position denotes port 2 (with no
input electric field). We assume that the beam is large enough
so that the entire Rayleigh range fits within the interferometer.
The matrix representation for the 50:50 beam splitter is given
by

B = 1√
2

(
1 i

i 1

)
, (2)

where column and row one correspond to port 4 (counter-
clockwise) and column and row two correspond to port 3
(clockwise). We now define a matrix that gives both an
opposite momentum shift k and a relative phase shift φ between
the two light paths:

M =
(

ei(−kx+φ/2) 0
0 e−i(−kx+φ/2)

)
. (3)

We assume a short propagation distance and a large beam
radius σ and thus ignore any divergence of the beam.
Therefore, the exiting electric field amplitude after propagation
is represented by the matrix combination (BMB)Ein,

Eout = iE0e
−x2/4σ 2

(− sin (kx − φ/2)
cos (kx − φ/2)

)
, (4)

where the first position now corresponds to port 2 (the dark
port) and the second position corresponds to port 1 (the bright
port).

For a balanced homodyne detection scheme, we take k = 0
and φ → π/2 + φ and subtract the integrated intensity of both
output ports. After normalizing by the total power, we obtain
the unitless homodyne signal

�h = sin φ ≈ φ. (5)

Thus, we see that by balancing the interferometer, we are
measuring the signal along the linear part of the sine curve for
small phase shifts.

In contrast, if we consider a small transverse momentum
shift (kσ < 1) and monitor only the dark port, given by the
first element in the Eout vector, we find that

E
(d)
out ≈ A

[
x

σ
− tan(φ/2)

kσ

]
exp[−x2/4σ 2], (6)
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FIG. 1. (Color online) Experimental setup. A coherent light
source passes through a polarizer (Pol), producing horizontally
polarized light before passing through the first 50:50 beam splitter
(BS). Half of the light strikes a beam block (BB) and is thrown out.
The beam then enters the Sagnac interferometer via the second BS.
One of the mirrors of the interferometer is controlled by a piezo
actuator (PA) to precisely control the relative transverse momentum
shift k. We use a half-wave plate (HWP) and a piezo-actuated
Soleil-Babinet compensator (SBC) to produce a relative phase shift
between the two light paths. During split detection, we monitor the
dark port using another BS that splits the light between a quad-cell
detector (QCD) and a charge-coupled-device camera (CCD). During
balanced homodyne detection, the interferometer is balanced and the
flip mirror (FM) is turned up, sending both bright (1) and dark (2)
ports into the balance detector (BD). We use a neutral density filter
(ND) in the dark port to correct for the light lost at the first BS.

where A = −iE0kσ cos(φ/2). The intensity at the dark port
is then given by

Id (x) = PpsI0

[
x

σ
− tan(φ/2)

kσ

]2

exp[−x2/2σ 2], (7)

where Pps is the attenuation (postselection probability) of the
measured output beam given by

Pps = |kσ cos (φ/2)|2, (8)

and I0 is the maximum input intensity density. Aside from
the attenuation factor Pps, Id (x) is normalized to the input for
vanishingly small φ. Equation (7) is plotted in Fig. 2.

The average position of the postselected beam given by
Eq. (7) is simply

〈x〉 ≈ −φ/k. (9)

We interpret Eq. (9) as an amplification of the small phase shift
φ by the mirror’s momentum kick k.

Instead of measuring the average position, one can use a
split-detection method by subtracting the integrated intensity
on the left side of the detector from the integrated intensity
on the right side of the detector. This detection method
is well suited to the split-Gaussian beam and results in a
split-detection signal which, if normalized by the total power
striking the detector, is proportional to the average position.
This quantity is given by

�s ≈ −
√

2

π

φ

kσ
≈

√
2

πσ 2
〈x〉. (10)
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FIG. 2. (Color online) Postselected intensity distribution. The
dotted (blue) curve is the single-mode input profile of the beam in
the interferometer. The solid (black) curve is the postselected split-
Gaussian mode produced by the misalignment of the interferometer
and a slight relative phase shift between the two light paths. The
solid lines represent the tilted wave fronts in the two paths of the
interferometer when they combine at the BS, one that is delayed
relative to the other, producing an asymmetric split-Gaussian (shown).
The dashed line represents a wave front with the same tilt but zero
relative phase delay, which would result in a symmetric split-Gaussian
(not shown).

Despite the large amplification of the average position
measurement of the postselected intensity, the SNR is
essentially the same for a balanced homodyne measurement
of phase using the same input power. The SNR of a phase
measurement using balanced homodyne or split detection
can be expressed explicitly as Rh,s = �h,s

√
Nd , where Nd

is the number of photons striking the detector. In the case of
homodyne detection, Nd = N . In the case of split detection, the
postselection reduces this quantity to Nd = N |kσ cos(φ/2)|2.
Therefore, Rh and Rs are identical for small φ, except for
an overall constant factor of

√
2/π . This reduces the SNR of

the split-detection method by approximately 20%. It is also
interesting to note that the SNR is independent of k. Thus,
we can in principle reduce k (and Pps) arbitrarily, allowing
us to increase the input power and therefore N , ultimately
improving the measurement sensitivity arbitrarily while using
the same detector.

Experiment. In the present experiment (see Fig. 1), the
coherent light beam was created using an external cavity
diode laser tuned approximately to 795 nm. The beam was
coupled into single-mode fiber and then launched to produce
a single-mode Gaussian profile. The light was collimated
with a radius of σ ≈ 775 µm and the continuous wave power
ranged from 0.5 to 1 mW. The Sagnac, composed of a 50:50
beam splitter and three mirrors, was rectangular. We used
two configurations for the geometry of the interferometer,
one with dimensions 39 × 8 cm (large) and another with
dimensions 11 × 8 cm (small). The beam profile and position
of the postselected photons were measured using a quad-cell
detector (QCD, New Focus Model 2921) functioning as a split
detector and a CCD camera (Newport Model LBP-2-USB).
During balanced homodyne detection, the signal was measured
using a Nirvana balance detector (BD, New Focus Model
2007). The quantum efficiency of the BD was about 81%,

011802-2
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whereas the quantum efficiency of the QCD was 75%. The
QCD was also equipped with a protective neutral density filter
with 50% transmissivity. The outputs from the QCD and the
BD were fed into two low-noise preamplifiers with frequency
filters (Stanford Research Systems Model SR560) in series.

We used a half-wave plate (HWP) with a piezo-actuated
Soleil-Babinet compensator (SBC) inside the Sagnac interfer-
ometer to induce a relative phase shift. The HWP was oriented
such that the horizontally polarized input light was rotated to
vertically polarized light. The SBC was oriented such that the
fast axis was vertical and the slow axis was horizontal. The
two light paths in the interferometer encountered these optical
elements in opposite order, allowing for a known, tunable
phase difference between them. The piezo actuator in the SBC,
which moved approximately 100 pm/mV, imparted a relative
phase shift of 22 ± 0.9 µrad/V.

Using the large configuration, with 0.5 mW of input power,
the piezo actuator in the SBC was driven with a 20-V peak to
peak sine wave at 634 Hz, corresponding to a relative phase
shift of 440 µrad. The normalized split-detection signal �s

(factoring in an offset from spurious light hitting the detector)
was measured while the transverse momentum shift k was
varied using the piezo-actuated mirror. After scaling �s by the
appropriate factor given in Eq. (10), the results were plotted
in Fig. 3. The theory line, which corresponds to a relative
phase shift of 440 µrad, is drawn along with the data. We see
good agreement of the data with theory, with a clear inverse
dependence of 〈x〉 on k. However, it should be noted that a
determination of k for this fit requires calibration, which in
practice is quite simple.

We then compared this split-detection method of phase
measurement to a balanced homodyne measurement. We used
the small configuration with 625 µW of (effective) continuous
wave input power—taking into account various attenuators—
and varied the driving voltage to the piezo actuator in the SBC.
The low-pass filter limits the laser noise to the 10% to 90% rise
time of a 1-kHz sine wave (300 µs). We take this limit as our
integration time to determine the number of 795-nm photons
used in each measurement. We measured the SNR of a phase
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FIG. 3. Dependence on transverse momentum. The transverse
momentum shift imparted by the piezo-actuated mirror was varied
and the split-detection signal was measured using the QCD. The
solid line is the theory curve from Eq. (9) using the expected phase
shift.
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FIG. 4. (Color online) Experimental comparison of split-
detection to balanced homodyne. We vary the driving voltage applied
to the piezo actuator and measure the SNR using balanced homodyne
detection (orange triangles) and the split-detection method (blue
squares). The input power to the interferometer is approximately
the same for both methods. Linear fits to the data (solid lines) show
that these two methods have essentially the same sensitivity. The
ideal quantum limited SNR (factoring in the quantum efficiency of
each detector) is plotted using the lower, dashed blue line (split-
detection) or the middle, dashed orange line (balanced homodyne
detection). The higher, dashed black line illustrates the theoretical
(
√

N ) improvement of the split-detection method assuming that an
equal number of photons are incident on both the split-detector and
the balance detector.

measurement (see Fig. 4) using the same method as Ref. [12]
and found that the SNR of our homodyne measurement was on
average 3.2 times below an ideal quantum limited system. The
SNR of our split-detection method was on average 2.6 times
below an ideal quantum limited system. We take into account
the quantum efficiency of each detector so that the number of
photons used with each technique is the same for these two
values, yet we ignore any contribution of dark current, thermal,
or mechanical noise to the expected SNR.

Importantly, the SNR resulting from both measurement
techniques is approximately the same. However, the split-
detection method for this data had only about 15% of the
input light incident on the detector. Thus, for diodes with the
same saturation intensity, it is possible to use almost seven
times more input power with this configuration, resulting in a
SNR about 2.6 times higher (the black, dashed line in Fig. 4).
The improvement of the SNR by taking advantage of the
attenuation before the detector has no theoretical limit and
is only limited in practice by phase front distortions and back-
reflections off of optical surfaces which degrade the fidelity
of the interference. Using commercially available equipment
and one day of integration time, subpicoradian sensitivity is
possible even with a low-saturation intensity split detector.

Conclusion. In summary, we have shown that the mea-
surement of a relative phase shift between two paths in an
interferometer can be measured and amplified using a split-
detection method. We note that, although a Sagnac was used in
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this experiment, the same results apply to other interferometers
(e.g., Michelson). Additionally, this method is comparable
to the sensitivity achievable using balanced homodyne tech-
niques, yet only the dark port of the interferometer is measured.
The split detector can have a low saturation intensity owing
to the large attenuation. In fact, the higher the attenuation,
the larger the amplification of the split-detection signal. Last,
although we have described this experiment classically, we
note that a quantum treatment is equally valid.

We believe that this technique is a robust, low-cost
alternative to balanced homodyne phase detection and may
have applications in a number of fields, for example, magne-
tometry (using nonlinear magneto-optical rotation) or rotation
sensing.

This research was supported by US Army Research Office
Grant No. W911NF-09-0-01417 and DARPA Expansion Grant
No. N00014-08-1-120.
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