1,593 research outputs found

    White dwarf masses in cataclysmic variables

    Full text link
    The white dwarf (WD) mass distribution of cataclysmic variables (CVs) has recently been found to dramatically disagree with the predictions of the standard CV formation model. The high mean WD mass among CVs is not imprinted in the currently observed sample of CV progenitors and cannot be attributed to selection effects. Two possibilities have been put forward: either the WD grows in mass during CV evolution, or in a significant fraction of cases, CV formation is preceded by a (short) phase of thermal time-scale mass transfer (TTMT) in which the WD gains a sufficient amount of mass. We investigate if either of these two scenarios can bring theoretical predictions and observations into agreement. We employed binary population synthesis models to simulate the present intrinsic CV population. We incorporated aspects specific to CV evolution such as an appropriate mass-radius relation of the donor star and a more detailed prescription for the critical mass ratio for dynamically unstable mass transfer. We also implemented a previously suggested wind from the surface of the WD during TTMT and tested the idea of WD mass growth during the CV phase by arbitrarily changing the accretion efficiency. We compare the model predictions with the characteristics of CVs derived from observed samples. We find that mass growth of the WDs in CVs fails to reproduce the observed WD mass distribution. In the case of TTMT, we are able to produce a large number of massive WDs if we assume significant mass loss from the surface of the WD during the TTMT phase. However, the model still produces too many CVs with helium WDs. Moreover, the donor stars are evolved in many of these post-TTMT CVs, which contradicts the observations. We conclude that in our current framework of CV evolution neither TTMT nor WD mass growth can fully explain either the observed WD mass or the period distribution in CVs.Comment: 15 pages, 7 figures, 1 table, accepted for publication in A&A. Replaced and added a reference, corrected typo

    Face-on accretion onto a protoplanetary disc

    Get PDF
    Globular clusters (GCs) are known to harbor multiple stellar populations. To explain these observations Bastian et al. suggested a scenario in which a second population is formed by the accretion of enriched material onto the low-mass stars in the initial GC population. The idea is that the low-mass, pre-main sequence stars sweep up gas expelled by the massive stars of the same generation into their protoplanetary disc as they move through the GC core. We perform simulations with 2 different smoothed particle hydrodynamics codes to investigate if a low-mass star surrounded by a protoplanetary disc can accrete the amount of enriched material required in this scenario. We focus on the gas loading rate onto the disc and star as well as on the lifetime of the disc. We find that the gas loading rate is a factor of 2 smaller than the geometric rate, because the effective cross section of the disc is smaller than its surface area. The loading rate is consistent for both codes, irrespective of resolution. The disc gains mass in the high resolution runs, but loses angular momentum on a time scale of 10^4 yrs. Two effects determine the loss of (specific) angular momentum in our simulations: 1) continuous ram pressure stripping and 2) accretion of material with no azimuthal angular momentum. Our study and previous work suggest that the former, dominant process is mainly caused by numerical rather than physical effects, while the latter is not. The latter process causes the disc to become more compact, increasing the surface density profile at smaller radii. The disc size is determined in the first place by the ram pressure when the flow first hits the disc. Further evolution is governed by the decrease in the specific angular momentum of the disc. We conclude that the size and lifetime of the disc are probably not sufficient to accrete the amount of mass required in Bastian et al.'s scenario.Comment: Accepted for publication in A&A, 15 pages, 5 figures, 4 table

    Differences in Adolescents' Alcohol Use and Smoking Behavior between Educational Tracks:Do Popularity Norms Matter?

    Get PDF
    Explanations about differences in drinking and smoking rates between educational tracks have so far mainly focused on factors outside the classroom. The extent to which these behaviors are rewarded with popularity within a classroom—so called popularity norms—and their interaction with individual characteristics could explain the observed differences in risk behavior. 1860 adolescents (M(age) = 13.04; 50% girls) from 81 different classrooms reported three times during one academic year about their own and their classmates behavior. Overall, in vocational tracks popularity norms for alcohol and smoking were more positive and predicted classroom differences in alcohol and smoking. Knowledge about classroom processes can advance the field in unraveling the functional aspects of risk behavior in adolescence. Preregistration: The hypotheses and the analytical plan of this study were preregistered under number #39136 (https://aspredicted.org/blind.php?x=gx77p6)

    HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes

    Get PDF
    HOXA10 is necessary for embryonic patterning of skeletal elements, but its function in bone formation beyond this early developmental stage is unknown. Here we show that HOXA10 contributes to osteogenic lineage determination through activation of Runx2 and directly regulates osteoblastic phenotypic genes. In response to bone morphogenic protein BMP2, Hoxa10 is rapidly induced and functions to activate the Runx2 transcription factor essential for bone formation. A functional element with the Hox core motif was characterized for the bone-related Runx2 P1 promoter. HOXA10 also activates other osteogenic genes, including the alkaline phosphatase, osteocalcin, and bone sialoprotein genes, and temporally associates with these target gene promoters during stages of osteoblast differentiation prior to the recruitment of RUNX2. Exogenous expression and small interfering RNA knockdown studies establish that HOXA10 mediates chromatin hyperacetylation and trimethyl histone K4 (H3K4) methylation of these genes, correlating to active transcription. HOXA10 therefore contributes to early expression of osteogenic genes through chromatin remodeling. Importantly, HOXA10 can induce osteoblast genes in Runx2 null cells, providing evidence for a direct role in mediating osteoblast differentiation independent of RUNX2. We propose that HOXA10 activates RUNX2 in mesenchymal cells, contributing to the onset of osteogenesis, and that HOXA10 subsequently supports bone formation by direct regulation of osteoblast phenotypic genes. <br/

    Getting Off on the Right Foot: Addressing Severe Lymphedema through a Novel Shoe Design

    Get PDF
    Engineering Projects in Community Service (EPICS) is a service-learning design program run by the College of Engineering at Purdue University. EPICS teaches students design skills by providing solutions for individuals, communities, and organizations in the surrounding area while mirroring engineering industry standards. Biomedical Engineering is a team within EPICS that strives to serve community partners through biomedical applications. HR is a patient who suffers from severe lymphedema. This condition results in her foot swelling three times its original size and requires her to utilize weekly leg compression therapy. Prescription shoes are slightly adequate. However, they lead to sores and pain due to fitting improperly and the expansion of her legs before her next compression treatment. HR reached out to the Weldon School of Biomedical Engineering to seek a solution. This project entails the design and fabrication of a prototype shoe that addresses the patient’s need to walk with shoes while effectively accommodating her symptoms. The user needs include condition accommodation, aesthetics, comfort, ease of use, cost, utility, and standardized documentation language. The design uses a novel break-sole passive expansion system that exceeds the normal passive expandable properties of other shoes, in addition to several expandable points that aid in functionality and comfort. The goal is that with this product, HR can get back to the things that she loves, including photography and hiking

    Cyclin dependent kinase-1 (Cdk-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (pdac)

    Get PDF
    The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy
    corecore