668 research outputs found

    Temporal Variation in the Association between Benzene and Leukemia Mortality

    Get PDF
    BackgroundBenzene is a human carcinogen. Exposure to benzene occurs in occupational and environmental settings.ObjectiveI evaluated variation in benzene-related leukemia with age at exposure and time since exposure.MethodsI evaluated data from a cohort of 1,845 rubber hydrochloride workers. Benzene exposure–leukemia mortality trends were estimated by applying proportional hazards regression methods. Temporal variation in the impact of benzene on leukemia rates was assessed via exposure time windows and fitting of a multistage cancer model.ResultsThe association between leukemia mortality and benzene exposures was of greatest magnitude in the 10 years immediately after exposure [relative rate (RR) at 10 ppm-years = 1.19; 95% confidence interval (CI), 1.10–1.29]; the association was of smaller magnitude in the period 10 to < 20 years after exposure (RR at 10 ppm-years = 1.05; 95% CI, 0.97–1.13); and there was no evidence of association ≄ 20 years after exposure. Leukemia was more strongly associated with benzene exposures accrued at ≄ 45 years of age (RR at 10 ppm-years = 1.11; 95% CI, 1.04–1.17) than with exposures accrued at younger ages (RR at 10 ppm-years = 1.01; 95% CI, 0.92–1.09). Jointly, these temporal effects can be efficiently modeled as a multistage process in which benzene exposure affects the penultimate stage in disease induction.ConclusionsFurther attention should be given to evaluating the susceptibility of older workers to benzene-induced leukemia

    Impact of Smoking and Chewing Tobacco on Arsenic-Induced Skin Lesions

    Get PDF
    BACKGROUND: We recently reported that the main reason for the documented higher prevalence of arsenic-related skin lesions among men than among women is the result of less efficient arsenic metabolism. OBJECTIVE: Because smoking has been associated with less efficient arsenic methylation, we aimed to elucidate interactions between tobacco use and arsenic metabolism for the risk of developing skin lesions. METHODS: We used a population-based case-referent study that showed increased risk for skin lesions in relation to chronic arsenic exposure via drinking water in Bangladesh and randomly selected 526 of the referents (random sample of inhabitants > 4 years old; 47% male) and all 504 cases (54% male) with arsenic-related skin lesions to measure arsenic metabolites [methylarsonic acid (MA) and dimethylarsinic acid (DMA)] in urine using high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICPMS). RESULTS: The odds ratio for skin lesions was almost three times higher in the highest tertile of urinary %MA than in the lowest tertile. Men who smoked cigarettes and bidis (locally produced cigarettes; 33% of referents, 58% of cases) had a significantly higher risk for skin lesions than did nonsmoking men; this association decreased slightly after accounting for arsenic metabolism. Only two women smoked, but women who chewed tobacco (21% of referents, 43% of cases) had a considerably higher risk of skin lesions than did women who did not use tobacco. The odds ratio (OR) for women who chewed tobacco and who had < or = 7.9%MA was 3.8 [95% confidence interval (CI), 1.4-10] compared with women in the same MA tertile who did not use tobacco. In the highest tertile of %MA or %inorganic arsenic (iAs), women who chewed tobacco had ORs of 7.3 and 7.5, respectively, compared with women in the lowest tertiles who did not use tobacco. CONCLUSION: The increased risk of arsenic-related skin lesions in male smokers compared with nonsmokers appears to be partly explained by impaired arsenic methylation, while there seemed to be an excess risk due to interaction between chewing tobacco and arsenic metabolism in women

    European Guidelines for Quality Assurance in Cervical Cancer Screening. Second Edition—Summary Document

    Get PDF
    European Guidelines for Quality Assurance in Cervical Cancer Screening have been initiated in the Europe Against Cancer Programme. The first edition established the principles of organised population-based screening and stimulated numerous pilot projects. The second multidisciplinary edition was published in 2008 and comprises ∌250 pages divided into seven chapters prepared by 48 authors and contributors. Considerable attention has been devoted to organised, population-based programme policies which minimise adverse effects and maximise benefits of screening. It is hoped that this expanded guidelines edition will have a greater impact on countries in which screening programmes are still lacking and in which opportunistic screening has been preferred in the past. Other methodological aspects such as future prospects of human papillomavirus testing and vaccination in cervical cancer control have also been examined in the second edition; recommendations for integration of the latter technologies into European guidelines are currently under development in a related project supported by the European Union Health Programme. An overview of the fundamental points and principles that should support any quality-assured screening programme and key performance indicators are presented here in a summary document of the second guidelines edition in order to make these principles and standards known to a wider scientific community

    Recent Mortality from Pleural Mesothelioma, Historical Patterns of Asbestos Use, and Adoption of Bans: A Global Assessment

    Get PDF
    [[abstract]]BACKGROUND: In response to the health risks posed by asbestos exposure, some countries have imposed strict regulations and adopted bans, whereas other countries have intervened less and continue to use varying quantities of asbestos. OBJECTIVES: This study was designed to assess, on a global scale, national experiences of recent mortality from pleural mesotheliomal historical trends in asbestos use, adoption of bans, and their possible interrelationships. METHODS: For 31 countries with available data, we analyzed recent pleural mesothelioma (International Classification of Diseases, 10th Revision) mortality rates (MRs) using age-adjusted period MRs (deaths/million/year) from 1996 to 2005. We calculated annual percent changes (APCs) in age-adjusted MRs to characterize trends during the period. We characterized historical patterns of asbestos use by per capita asbestos use (kilograms per capita/year) and the status of national bans. RESULTS: Period MRs increased with statistical significance in five countries, with marginal significance in two countries, and were equivocal in 24 countries (five countries in Northern and Western Europe recorded negative APC values). Countries adopting asbestos bans reduced use rates about twice as fast as those not adopting bans. Turning points in use preceded bans. Change in asbestos use during 1970-1985 was a significant predictor of APC in mortality for pleural mesothelioma, with an adjusted R-2 value of 0.47 (p < 0.0001). CONCLUSIONS: The observed disparities in global mesothelioma trends likely relate to country-to-country disparities in asbestos use trends

    Epigenetic Changes Induced by Air Toxics: Formaldehyde Exposure Alters miRNA Expression Profiles in Human Lung Cells

    Get PDF
    Bac k g r o u n d: Exposure to formaldehyde, a known air toxic, is associated with cancer and lung disease. Despite the adverse health effects of formaldehyde, the mechanisms underlying formaldehydeinduced disease remain largely unknown. Research has uncovered microRNAs (miRNAs) as key posttranscriptional regulators of gene expression that may influence cellular disease state. Although studies have compared different miRNA expression patterns between diseased and healthy tissue, this is the first study to examine perturbations in global miRNA levels resulting from formaldehyde exposure. Objectives: We investigated whether cellular miRNA expression profiles are modified by formaldehyde exposure to test the hypothesis that formaldehyde exposure disrupts miRNA expression levels within lung cells, representing a novel epigenetic mechanism through which formaldehyde may induce disease. Me t h o d s: Human lung epithelial cells were grown at air–liquid interface and exposed to gaseous formaldehyde at 1 ppm for 4 hr. Small RNAs and protein were collected and analyzed for miRNA expression using microarray analysis and for interleukin (IL-8) protein levels by enzyme-linked immunosorbent assay (ELISA). Res u l t s: Gaseous formaldehyde exposure altered the miRNA expression profiles in human lun
    • 

    corecore