3,901 research outputs found

    Comparative aspects of phytase and xylanase effects on performance, mineral digestibility, and ileal phytate degradation in broilers and turkeys

    Get PDF
    Two experiments were performed, using broilers or turkeys, each utilizing a 3 × 2 factorial arrangement, to compare their response to phytase and xylanase supplementation with growth performance, nutrient digestibility, and ileal phytate degradation as response criteria. For both experiments, 960 Ross 308 or 960 BUT 10 (0-day-old) birds were allocated to 6 treatments: (1) control diet, containing phytase at 500 FTU/kg; (2) the control diet with xylanase (16,000 BXU/kg); (3) the control diet supplemented on top with phytase (1,500 FTU/kg); (4) diet supplemented with 1,500 FTU/kg phytase and xylanase (16,000 BXU/kg); (5) the control diet supplemented with phytase (3,000 FTU/kg); and (6) diet supplemented with 3,000 FTU/kg phytase and xylanase (16,000 BXU/kg). Each treatment had 8 replicates of 20 birds each. Water and diets based on wheat, soybean meal, oilseed rape meal, and barley were available ad libitum. Body weight gain and feed intake were measured from 0 to 28 D, and feed conversion ratio (FCR) corrected for mortality was calculated. Ileal digestibility for dry matter and minerals on day 7 and 28 were analyzed in addition to levels of inositol phosphate esters (InsP6-3) and myo-inositol. Statistical comparisons were performed using ANOVA. Xylanase supplementation improved 28D FCR in broilers and turkeys. Increasing doses of phytase reduced FI and improved FCR only in broilers. In broilers, the age × phytase interaction for phosphorous digestibility showed that increasing phytase dose was more visible on day 7, than on day 28. Mineral digestibility was lower in 28-day-old turkey compared with 7-day-old turkey. InsP6 disappearance increased with increasing phytase levels in both species, with lower levels analyzed in turkeys. InsP6 disappearance was greater in younger turkeys (day 7 compared with day 28). In conclusion, although broilers and turkeys shared several similarities in their growth and nutrient utilization responses, the outcomes of the 2 trials also differed in many aspects. Whether this is because of difference in diets (InsP or Ca level) or differences between species needs further investigation

    Superlinear Scaling for Innovation in Cities

    Full text link
    Superlinear scaling in cities, which appears in sociological quantities such as economic productivity and creative output relative to urban population size, has been observed but not been given a satisfactory theoretical explanation. Here we provide a network model for the superlinear relationship between population size and innovation found in cities, with a reasonable range for the exponent.Comment: 5 pages, 5 figures, 1 table, submitted to Phys. Rev. E; references corrected; figures corrected, references and brief discussion adde

    Two distinct mechanisms localise cyclin B transcripts in syncytial Drosophila embryos

    Get PDF
    We demonstrate that two independent mechanisms act on maternally derived cyclin B transcripts to concentrate the transcripts at the posterior pole of the Drosophila oocyte and at the cortex of the syncytial embryo. The cortical accumulation occurs because the cyclin B transcript is concentrated around nuclei and comigrates with them to the cortex. The perinuclear localisation of the transcript is blocked by inhibitors of microtubule polymerisation and the transcript colocalises with microtubular structures during the cell cycle, suggesting that the transcript is associated either directly or indirectly with microtubules. Neither microtubules nor actin filaments are required to maintain the posterior concentration of cyclin B transcripts. Instead, this seems to depend on the association of the transcripts with a component of the posterior cytoplasm. The distribution pattern of the transcript at the posterior pole throughout embryogenesis and in a variety of mutant embryos suggests that this component is associated with polar granules

    Simulation of Classical Thermal States on a Quantum Computer: A Transfer Matrix Approach

    Get PDF
    We present a hybrid quantum-classical algorithm to simulate thermal states of a classical Hamiltonians on a quantum computer. Our scheme employs a sequence of locally controlled rotations, building up the desired state by adding qubits one at a time. We identify a class of classical models for which our method is efficient and avoids potential exponential overheads encountered by Grover-like or quantum Metropolis schemes. Our algorithm also gives an exponential advantage for 2D Ising models with magnetic field on a square lattice, compared with the previously known Zalka's algorithm.Comment: 5 pages, 3 figures; (new in version 2: added new figure, title changed, rearranged paragraphs

    Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae)

    Get PDF
    Citation: Barandoc-Alviar, K., Ramirez, G. M., Rotenberg, D., & Whitfield, A. E. (2016). Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae). Journal of Insect Science, 16(1), 1-8. https://doi.org/10.1093/jisesa/iev154The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdovirus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV differed significantly between nymphs and adults. MMV titer increased significantly over time and throughout insect development from nymphal to adult stage, indication of virus replication in the vector during development. There was a positive association between the vector developmental stage and virus titer. Also, the average titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV

    The 190 kDa centrosome-associated protein of Drosophila melanogaster contains four zinc finger motifs and binds to specific sites on polytene chromosomes

    Get PDF
    Microinjection of a bacterially expressed, TRITC labelled fragment of the centrosome-associated protein CP190 of Drosophila melanogaster, into syncytial Drosophila embryos, shows it to associate with the centrosomes during mitosis, and to relocate to chromatin during interphase. Indirect immunofluorescence staining of salivary gland chromosomes of third instar Drosophila larvae, with antibodies specific to CP190, indicate that the protein is associated with a large number of loci on these interphase polytene chromosomes. The 190 kDa CP190 protein is encoded by a 4.1 kb transcript with a single, long open reading frame specifying a polypeptide of 1,096 amino acids, with a molecular mass of 120 kDa, and an isoelectric point of 4.5. The central region of the predicted amino acid sequence of the CP190 protein contains four CysX₂CysX₁₂HisX₄His zinc-finger motifs which are similar to those described for several well characterised DNA binding proteins. The data suggest that the function of CP190 involves cell cycle dependent associations with both the centrosome, and with specific chromosomal loci

    The 190 kDa centrosome-associated protein of Drosophila melanogaster contains four zinc finger motifs and binds to specific sites on polytene chromosomes

    Get PDF
    Microinjection of a bacterially expressed, TRITC labelled fragment of the centrosome-associated protein CP190 of Drosophila melanogaster, into syncytial Drosophila embryos, shows it to associate with the centrosomes during mitosis, and to relocate to chromatin during interphase. Indirect immunofluorescence staining of salivary gland chromosomes of third instar Drosophila larvae, with antibodies specific to CP190, indicate that the protein is associated with a large number of loci on these interphase polytene chromosomes. The 190 kDa CP190 protein is encoded by a 4.1 kb transcript with a single, long open reading frame specifying a polypeptide of 1,096 amino acids, with a molecular mass of 120 kDa, and an isoelectric point of 4.5. The central region of the predicted amino acid sequence of the CP190 protein contains four CysX₂CysX₁₂HisX₄His zinc-finger motifs which are similar to those described for several well characterised DNA binding proteins. The data suggest that the function of CP190 involves cell cycle dependent associations with both the centrosome, and with specific chromosomal loci

    Cloning of a gene encoding an antigen associated with the centrosome in Drosophila

    Get PDF
    The monoclonal antibody Bx63 recognizes a centrosomal antigen of Drosophila melanogaster by indirect immunofluorescence and identifies two proteins, with apparent molecular weights of 185 x 10³ and 66 x 10³, on Western blots. We have used this antibody to isolate five clones (λcs1, -2, -3, -4 and λj63) from λgt11 expression libraries of Drosophila DNA. Using polyclonal anti-centrosomal sera raised against both immunoaffinity-purified Bx63 antigen and electrophoretically purified fusion protein from clone λcs3, we have demonstrated that the fusion proteins encoded by four of these clones (λcs1-4) share at least two epitopes with the 185 x 10³ M_r centrosomal antigen. This indicates that clones λcs1-4 contain DNA from the gene coding for this protein. The four clones are independent isolates from a single chromosomal site, which we show by in situ hybridization to correspond with salivary gland chromosome region 88E 4-8. A low-abundance transcript of approximately 4.0 x 10³ bases corresponding to the cloned gene is detected in all stages of the Drosophila life-cycle

    Cloning of a gene encoding an antigen associated with the centrosome in Drosophila

    Get PDF
    The monoclonal antibody Bx63 recognizes a centrosomal antigen of Drosophila melanogaster by indirect immunofluorescence and identifies two proteins, with apparent molecular weights of 185 x 10³ and 66 x 10³, on Western blots. We have used this antibody to isolate five clones (λcs1, -2, -3, -4 and λj63) from λgt11 expression libraries of Drosophila DNA. Using polyclonal anti-centrosomal sera raised against both immunoaffinity-purified Bx63 antigen and electrophoretically purified fusion protein from clone λcs3, we have demonstrated that the fusion proteins encoded by four of these clones (λcs1-4) share at least two epitopes with the 185 x 10³ M_r centrosomal antigen. This indicates that clones λcs1-4 contain DNA from the gene coding for this protein. The four clones are independent isolates from a single chromosomal site, which we show by in situ hybridization to correspond with salivary gland chromosome region 88E 4-8. A low-abundance transcript of approximately 4.0 x 10³ bases corresponding to the cloned gene is detected in all stages of the Drosophila life-cycle

    Time\u27s Arrow Flies Like a Bird: Two Paradoxes for Avian Circadian Biology

    Get PDF
    Biological timekeeping in birds is a fundamental feature of avian physiology, behavior and ecology. The physiological basis for avian circadian rhythmicity has pointed to a multi-oscillator system of mutually coupled pacemakers in the pineal gland, eyes and hypothalamic suprachiasmatic nuclei (SCN). In passerines, the role of the pineal gland and its hormone melatonin is particularly important. More recent molecular biological studies have pointed to a highly conserved mechanism involving rhythmic transcription and translation of clock genes . However, studies attempting to reconcile the physiological role of pineal melatonin with molecular studies have largely failed. Recent work in our laboratory has suggested that melatonin-sensitive physiological processes are only loosely coupled to transcriptional oscillations. Similarly, although the pineal gland has been shown to be critical for overt circadian behaviors, its role in annual cycles of reproductive function appears to be minimal. Recent work on the seasonal control of birdsong, however, suggests that, although the pineal gland does not directly affect gonadal cycles, it is important for seasonal changes in song. Experimental analyses that address these paradoxes will shed light on the roles the biological clock play in birds and in vertebrates in general
    corecore