550 research outputs found

    The Efficacy of Three Objective Systems for Identifying Beef Cuts That Can Be Guaranteed Tender

    Get PDF
    The objective of this study was to determine the accuracy of three objective systems (prototype BeefCam, colorimeter, and slice shear force) for identifying guaranteed tender beef. In Phase I, 308 carcasses (105 Top Choice, 101 Low Choice, and 102 Select) from two commercial plants were tested. In Phase II, 400 carcasses (200 rolled USDA Select and 200 rolled USDA Choice) from one commercial plant were tested. The three systems were evaluated based on progressive certification of the longissimus as “tender” in 10% increments (the best 10, 20, 30%, etc., certified as “tender” by each technology; 100% certification would mean no sorting for tenderness). In Phase I, the error (percentage of carcasses certified as tender that had Warner- Bratzler shear force of ≄ 5 kg at 14 d postmortem) for 100% certification using all carcasses was 14.1%. All certification levels up to 80% (slice shear force) and up to 70% (colorimeter) had less error (P \u3c 0.05) than 100% certification. Errors in all levels of certification by prototype BeefCam (13.8 to 9.7%) were not different (P \u3e 0.05) from 100% certification. In Phase I, the error for 100% certification for USDA Select carcasses was 30.7%. For Select carcasses, all slice shear force certification levels up to 60% (0 to 14.8%) had less error (P \u3c 0.05) than 100% certification. For Select carcasses, errors in all levels of certification by colorimeter (20.0 to 29.6%) and by BeefCam (27.5 to 31.4%) were not different (P \u3e 0.05) from 100% certification. In Phase II, the error for 100% certification for all carcasses was 9.3%. For all levels of slice shear force certification less than 90% (for all carcasses) or less than 80% (Select carcasses), errors in tenderness certification were less than (P \u3c 0.05) for 100% certification. In Phase II, for all carcasses or Select carcasses, colorimeter and prototype BeefCam certifications did not significantly reduce errors (P \u3e 0.05) compared to 100% certification. Thus, the direct measure of tenderness provided by slice shear force results in more accurate identification of “tender” beef carcasses than either of the indirect technologies, prototype BeefCam, or colorimeter, particularly for USDA Select carcasses. As tested in this study, slice shear force, but not the prototype BeefCam or colorimeter systems, accurately identified “tender” beef

    Nonexistence of marginally trapped surfaces and geons in 2+1 gravity

    Full text link
    We use existence results for Jang's equation and marginally outer trapped surfaces (MOTSs) in 2+1 gravity to obtain nonexistence of geons in 2+1 gravity. In particular, our results show that any 2+1 initial data set, which obeys the dominant energy condition with cosmological constant \Lambda \geq 0 and which satisfies a mild asymptotic condition, must have trivial topology. Moreover, any data set obeying these conditions cannot contain a MOTS. The asymptotic condition involves a cutoff at a finite boundary at which a null mean convexity condition is assumed to hold; this null mean convexity condition is satisfied by all the standard asymptotic boundary conditions. The results presented here strengthen various aspects of previous related results in the literature. These results not only have implications for classical 2+1 gravity but also apply to quantum 2+1 gravity when formulated using Witten's solution space quantization.Comment: v3: Elements from the original two proofs of the main result have been combined to give a single proof, thereby circumventing an issue with the second proof associated with potential blow-ups of solutions to Jang's equation. To appear in Commun. Math. Phy

    Afshar's Experiment does not show a Violation of Complementarity

    Full text link
    A recent experiment performed by S. Afshar [first reported by M. Chown, New Scientist {\bf 183}, 30 (2004)] is analyzed. It was claimed that this experiment could be interpreted as a demonstration of a violation of the principle of complementarity in quantum mechanics. Instead, it is shown here that it can be understood in terms of classical wave optics and the standard interpretation of quantum mechanics. Its performance is quantified and it is concluded that the experiment is suboptimal in the sense that it does not fully exhaust the limits imposed by quantum mechanics.Comment: 6 pages, 6 figure

    EPR-Bell Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory

    Get PDF
    We discuss the problem of finding a Lorentz invariant extension of Bohmian mechanics. Due to the nonlocality of the theory there is (for systems of more than one particle) no obvious way to achieve such an extension. We present a model invariant under a certain limit of Lorentz transformations, a limit retaining the characteristic feature of relativity, the non-existence of absolute time resp. simultaneity. The analysis of this model exemplifies an important property of any Bohmian quantum theory: the quantum equilibrium distribution ρ=âˆŁÏˆâˆŁ2\rho = |\psi |^2 cannot simultaneously be realized in all Lorentz frames of reference.Comment: 24 pages, LaTex, 4 figure

    Information Invariance and Quantum Probabilities

    Full text link
    We consider probabilistic theories in which the most elementary system, a two-dimensional system, contains one bit of information. The bit is assumed to be contained in any complete set of mutually complementary measurements. The requirement of invariance of the information under a continuous change of the set of mutually complementary measurements uniquely singles out a measure of information, which is quadratic in probabilities. The assumption which gives the same scaling of the number of degrees of freedom with the dimension as in quantum theory follows essentially from the assumption that all physical states of a higher dimensional system are those and only those from which one can post-select physical states of two-dimensional systems. The requirement that no more than one bit of information (as quantified by the quadratic measure) is contained in all possible post-selected two-dimensional systems is equivalent to the positivity of density operator in quantum theory.Comment: 8 pages, 1 figure. This article is dedicated to Pekka Lahti on the occasion of his 60th birthday. Found. Phys. (2009

    Rational design of biosafe crop resistance to a range of nematodes using RNA interference

    Get PDF
    Double stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal Alpha Subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison to Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3 fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9 fold and 4 fold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7 and 2 fold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9 and 5.6 fold. There was no detectable RNAi effect on non-target nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of non-protein defences to provide broad resistance to pests and pathogens of crops

    The Hamiltonian of Einstein affine-metric formulation of General Relativity

    Full text link
    It is shown that the Hamiltonian of the Einstein affine-metric (first order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as is the case for the second order formulation. In the second order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables [arXiv: 0809.0097]. For the first order formulation, the necessity of such a redefinition "to correspond to diffeomorphism invariance" (reported by Ghalati [arXiv: 0901.3344]) is just an artifact of using the Henneaux-Teitelboim-Zanelli ansatz [Nucl. Phys. B 332 (1990) 169], which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani [Ann. Phys. 143 (1982) 357] is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second and first order formulations of metric GR. The first order formulation of Einstein-Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed.Comment: 74 page

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    IGF-1 does not moderate the time-dependent transcriptional patterns of key homeostatic genes induced by sustained compression of bovine cartilage

    Get PDF
    Objective To determine changes in chondrocyte transcription of a range of anabolic, catabolic and signaling genes following simultaneous treatment of cartilage with Insulin-like growth factor-1 (IGF-1) and ramp-and-hold mechanical compression, and compare with effects on biosynthesis. Methods Explant disks of bovine calf cartilage were slowly compressed (unconfined) over 3-min to their 1 mm cut-thickness (0%-compression) or to 50%-compression with or without 300 ng/ml IGF-1. Expression of 24 genes involved in cartilage homeostasis was measured using qPCR at 2, 8, 24, 32, 48 h after compression ±IGF-1. Clustering analysis was used to identify groups of co-expressed genes to further elucidate mechanistic pathways. Results IGF-1 alone stimulated gene expression of aggrecan and collagen II, but simultaneous 24h compression suppressed this effect. Compression alone up-regulated expression of matrix metalloproteinase (MMP)-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 and transforming growth factor (TGF)-ÎČ, an effect not reversed by simultaneous IGF-1 treatment. Temporal changes in expression following IGF-1 treatment were generally slower than that following compression. Clustering analysis revealed five distinct groups within which the pairings, tissue inhibitor of metalloproteinase (TIMP)-3 and ADAMTS-5, MMP-1 and IGF-2, and IGF-1 and Collagen II, were all robustly co-expressed, suggesting inherent regulation and feedback in chondrocyte gene expression. While aggrecan synthesis was transcriptionally regulated by IGF-1, inhibition of aggrecan synthesis by sustained compression appeared post-transcriptionally regulated. Conclusion Sustained compression markedly altered the effects of IGF-1 on expression of genes involved in cartilage homeostasis, while IGF-1 was largely unable to moderate the transcriptional effects of compression alone. The demonstrated co-expressed gene pairings suggest a balance of anabolic and catabolic activity following simultaneous mechanical and growth factor stimuli.National Institutes of Health (U.S.) (grant R01-AR33236)National Institutes of Health (U.S.) (grant R01-HG003352)National Institutes of Health (U.S.) (grant P42-ES04699)National Institutes of Health (U.S.) (grant T32-EB006348

    The Hamiltonian formulation of General Relativity: myths and reality

    Full text link
    A conventional wisdom often perpetuated in the literature states that: (i) a 3+1 decomposition of space-time into space and time is synonymous with the canonical treatment and this decomposition is essential for any Hamiltonian formulation of General Relativity (GR); (ii) the canonical treatment unavoidably breaks the symmetry between space and time in GR and the resulting algebra of constraints is not the algebra of four-dimensional diffeomorphism; (iii) according to some authors this algebra allows one to derive only spatial diffeomorphism or, according to others, a specific field-dependent and non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac [Proc. Roy. Soc. A 246 (1958) 333] and of ADM [Arnowitt, Deser and Misner, in "Gravitation: An Introduction to Current Research" (1962) 227] of the canonical structure of GR are equivalent. We provide some general reasons why these statements should be questioned. Points (i-iii) have been shown to be incorrect in [Kiriushcheva et al., Phys. Lett. A 372 (2008) 5101] and now we thoroughly re-examine all steps of the Dirac Hamiltonian formulation of GR. We show that points (i-iii) above cannot be attributed to the Dirac Hamiltonian formulation of GR. We also demonstrate that ADM and Dirac formulations are related by a transformation of phase-space variables from the metric gΌΜg_{\mu\nu} to lapse and shift functions and the three-metric gkmg_{km}, which is not canonical. This proves that point (iv) is incorrect. Points (i-iii) are mere consequences of using a non-canonical change of variables and are not an intrinsic property of either the Hamilton-Dirac approach to constrained systems or Einstein's theory itself.Comment: References are added and updated, Introduction is extended, Subsection 3.5 is added, 83 pages; corresponds to the published versio
    • 

    corecore