8,476 research outputs found
Topological Schr\"odinger cats: Non-local quantum superpositions of topological defects
Topological defects (such as monopoles, vortex lines, or domain walls) mark
locations where disparate choices of a broken symmetry vacuum elsewhere in the
system lead to irreconcilable differences. They are energetically costly (the
energy density in their core reaches that of the prior symmetric vacuum) but
topologically stable (the whole manifold would have to be rearranged to get rid
of the defect). We show how, in a paradigmatic model of a quantum phase
transition, a topological defect can be put in a non-local superposition, so
that - in a region large compared to the size of its core - the order parameter
of the system is "undecided" by being in a quantum superposition of conflicting
choices of the broken symmetry. We demonstrate how to exhibit such a
"Schr\"odinger kink" by devising a version of a double-slit experiment suitable
for topological defects. Coherence detectable in such experiments will be
suppressed as a consequence of interaction with the environment. We analyze
environment-induced decoherence and discuss its role in symmetry breaking.Comment: 7 pages, 4 figure
An approximate analytical solution for describing surface runoffand sediment transport over hillslope
Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.</span
beadarrayFilter : an R package to filter beads
Microarrays enable the expression levels of thousands of genes to be measured simultaneously. However, only a small fraction of these genes are expected to be expressed under different experimental conditions. Nowadays, filtering has been introduced as a step in the microarray preprocessing pipeline. Gene filtering aims at reducing the dimensionality of data by filtering redundant features prior to the actual statistical analysis. Previous filtering methods focus on the Affymetrix platform and can not be easily ported to the Illumina platform. As such, we developed a filtering method for Illumina bead arrays. We developed an R package, beadarrayFilter, to implement the latter method. In this paper, the main functions in the package are highlighted and using many examples, we illustrate how beadarrayFilter can be used to filter bead arrays
N-Acetyl-seryl-aspartyl-lysyl-proline Alleviates Renal Fibrosis Induced by Unilateral Ureteric Obstruction in BALB/C Mice
To expand the armamentarium of treatment for chronic kidney disease (CKD), we explored the utility of boosting endogenously synthesized N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is augmented by inhibition of the angiotensin converting enzyme. Male BALB/c mice underwent unilateral ureteral ligation (UUO) or sham operation and received exogenously administered Ac-SDKP delivered via a subcutaneous osmotic minipump or Captopril treatment by oral gavage. Seven days after UUO, there were significant reductions in the expression of both collagen 1 and collagen 3 in kidneys treated with Ac-SDKP or Captopril, and there was a trend towards reductions in collagen IV, alpha-SMA, and MCP-1 versus control. However, no significant attenuation of interstitial injury or macrophage infiltration was observed. These findings are in contrary to observations in other models and underscore the fact that a longer treatment time frame may be required to yield anti-inflammatory effects in BALB/c mice treated with Ac-SDKP compared to untreated mice. Finding an effective treatment regimen for CKD requires fine-tuning of pharmacologic protocols.published_or_final_versio
Small Hairy Black Holes in Global AdS Spacetime
We study small charged black holes in global AdS spacetime in the presence of
a charged massless minimally coupled scalar field. In a certain parameter range
these black holes suffer from well known superradiant instabilities. We
demonstrate that the end point of the resultant tachyon condensation process is
a hairy black hole which we construct analytically in a perturbative expansion
in the black hole radius. At leading order our solution is a small undeformed
RNAdS black hole immersed into a charged scalar condensate that fills the AdS
`box'. These hairy black hole solutions appear in a two parameter family
labelled by their mass and charge. Their mass is bounded from below by a
function of their charge; at the lower bound a hairy black hole reduces to a
regular horizon free soliton which can also be thought of as a nonlinear Bose
condensate. We compute the microcanonical phase diagram of our system at small
mass, and demonstrate that it exhibits a second order `phase transition'
between the RNAdS black hole and the hairy black hole phases.Comment: 68+1 pages, 18 figures, JHEP format. v2 : small typos corrected and a
  reference adde
Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have recently shown promise as a therapeutic tool in various types of chronic kidney disease (CKD) models. However, the mechanism of action is incompletely understood. As renal prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal transition (EMT) under a protein-overloaded milieu. Using a co-culture model of human proximal tubular epithelial cells (PTECs) and BM-MSCs, we showed that concomitant stimulation of BM-MSCs by albumin excess was a prerequisite for them to attenuate albumin-induced IL-6, IL-8, TNF-alpha, CCL-2, CCL-5 overexpression in PTECs, which was partly mediated via deactivation of tubular NF-kappaB signaling. In addition, albumin induced tubular EMT, as shown by E-cadherin loss and alpha-SMA, FN and collagen IV overexpression, was also prevented by BM-MSC co-culture. Albumin-overloaded BM-MSCs per se retained their tri-lineage differentiation capacity and overexpressed hepatocyte growth factor (HGF) and TNFalpha-stimulating gene (TSG)-6 via P38 and NF-kappaB signaling. Albumin-induced tubular CCL-2, CCL-5 and TNF-alpha overexpression were suppressed by recombinant HGF treatment, while the upregulation of alpha-SMA, FN and collagen IV was attenuated by recombinant TSG-6. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture in albumin-induced PTECs, respectively. In vivo, albumin-overloaded mice treated with mouse BM-MSCs had markedly reduced BUN, tubular CCL-2 and CCL-5 expression, alpha-SMA and collagen IV accumulation independent of changes in proteinuria. These data suggest anti-inflammatory and anti-fibrotic roles of BM-MSCs on renal tubular cells under a protein overloaded condition, probably mediated via the paracrine action of HGF and TSG-6.published_or_final_versio
BMP7 reduces inflammation and oxidative stress in diabetic tubulopathy
Bone morphogenetic protein 7 (BMP7) has been reported to confer renoprotective effects in acute and chronic kidney disease models, but its potential role in Type 2 diabetic nephropathy remains unknown. In cultured human proximal tubular epithelial cells (PTECs), exposure to advanced glycation end-products (AGEs) induced overexpression of intercellular adhesion molecule 1 (ICAM1), monocyte chemoattractant protein 1 (MCP1), interleukin 8 (IL-8) and interleukin 6 (IL-6), involving activation of p44/42 and p38 mitogen-activated protein kinase (MAPK) signalling. BMP7 dose-dependently attenuated AGE-induced up-regulation of ICAM1, MCP1, IL-8 and IL-6 at both mRNA and protein levels. Moreover, BMP7 suppressed AGE-induced p38 and p44/42 MAPK phosphorylation and reactive oxygen species production in PTECs. Compared with vehicle control, uninephrectomized db/db mice treated with BMP7 for 8 weeks had significantly lower urinary albumin-to-creatinine ratio (3549±816.2 μg/mg compared with 8612±2037 μg/mg, P=0.036), blood urea nitrogen (33.26±1.09 mg/dl compared with 37.49±0.89 mg/dl, P=0.006), and renal cortical expression of ICAM1 and MCP1 at both gene and protein levels. In addition, BMP7-treated animals had significantly less severe tubular damage, interstitial inflammatory cell infiltration, renal cortical p38 and p44/42 phosphorylation and lipid peroxidation. Our results demonstrate that BMP7 attenuates tubular pro-inflammatory responses in diabetic kidney disease by suppressing oxidative stress and multiple inflammatory signalling pathways including p38 and p44/42 MAPK. Its potential application as a therapeutic molecule in diabetic nephropathy warrants further investigation.postprin
Observation of Bose-Einstein Condensation in a Strong Synthetic Magnetic Field
Extensions of Berry's phase and the quantum Hall effect have led to the
discovery of new states of matter with topological properties. Traditionally,
this has been achieved using gauge fields created by magnetic fields or spin
orbit interactions which couple only to charged particles. For neutral
ultracold atoms, synthetic magnetic fields have been created which are strong
enough to realize the Harper-Hofstadter model. Despite many proposals and major
experimental efforts, so far it has not been possible to prepare the ground
state of this system. Here we report the observation of Bose-Einstein
condensation for the Harper-Hofstadter Hamiltonian with one-half flux quantum
per lattice unit cell. The diffraction pattern of the superfluid state directly
shows the momentum distribution on the wavefuction, which is gauge-dependent.
It reveals both the reduced symmetry of the vector potential and the twofold
degeneracy of the ground state. We explore an adiabatic many-body state
preparation protocol via the Mott insulating phase and observe the superfluid
ground state in a three-dimensional lattice with strong interactions.Comment: 6 pages, 5 figures. Supplement: 6 pages, 4 figure
The specificity and patterns of staining in human cells and tissues of p16INK4a antibodies demonstrate variant antigen binding
The validity of the identification and classification of human cancer using antibodies to detect biomarker proteins depends upon antibody specificity. Antibodies that bind to the tumour-suppressor protein p16INK4a are widely used for cancer diagnosis and research. In this study we examined the specificity of four commercially available anti-p16INK4a antibodies in four immunological applications. The antibodies H-156 and JC8 detected the same 16 kDa protein in western blot and immunoprecipitation tests, whereas the antibody F-12 did not detect any protein in western blot analysis or capture a protein that could be recognised by the H-156 antibody. In immunocytochemistry tests, the antibodies JC8 and H-156 detected a predominately cytoplasmic localised antigen, whose signal was depleted in p16INK4a siRNA experiments. F-12, in contrast, detected a predominately nuclear located antigen and there was no noticeable reduction in this signal after siRNA knockdown. Furthermore in immunohistochemistry tests, F-12 generated a different pattern of staining compared to the JC8 and E6H4 antibodies. These results demonstrate that three out of four commercially available p16INK4a antibodies are specific to, and indicate a mainly cytoplasmic localisation for, the p16INK4a protein. The F-12 antibody, which has been widely used in previous studies, gave different results to the other antibodies and did not demonstrate specificity to human p16INK4a. This work emphasizes the importance of the validation of commercial antibodies, aside to the previously reported use, for the full verification of immunoreaction specificity
- …
