779 research outputs found

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. Β© 2013 Kaabinejadian et al

    Lovelock gravity from entropic force

    Full text link
    In this paper, we first generalize the formulation of entropic gravity to (n+1)-dimensional spacetime. Then, we propose an entropic origin for Gauss-Bonnet gravity and more general Lovelock gravity in arbitrary dimensions. As a result, we are able to derive Newton's law of gravitation as well as the corresponding Friedmann equations in these gravity theories. This procedure naturally leads to a derivation of the higher dimensional gravitational coupling constant of Friedmann/Einstein equation which is in complete agreement with the results obtained by comparing the weak field limit of Einstein equation with Poisson equation in higher dimensions. Our study shows that the approach presented here is powerful enough to derive the gravitational field equations in any gravity theory. PACS: 04.20.Cv, 04.50.-h, 04.70.Dy.Comment: 10 pages, new versio

    In Vitro Cultures of Schisandra chinensis (Turcz.) Baill. (Chinese Magnolia Vine)β€”a Potential Biotechnological Rich Source of Therapeutically Important Phenolic Acids

    Get PDF
    The contents of free phenolic acids and cinnamic acid were determined using an HPLC method in methanolic extracts from biomass of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) at different stages of organogenesis, cultured in vitro on a few variants of Murashige and Skoog (MS) medium, containing different concentrations of plant growth regulators 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (from 0.1 to 3.0Β mg/l) and in extracts from overground parts of plants growing in vivo. Six of 12 analysed compounds were detected in all extracts: chlorogenic, p-coumaric, p-hydroxybenzoic, protocatechuic, salicylic and syringic acids. Total contents of the examined metabolites in biomass of shoot-differentiating callus culture cultivated on six MS medium variants were dependent on concentrations of growth regulators in the media and ranged from 14.90 to 60.05Β mg/100Β g d.w. Total contents of the compounds in biomass extracts from undifferentiating callus culture maintained only on two of six MS medium variants were higher and amounted to 74.54 and 78.24Β mg/100Β g d.w. Maximum total contents of phenolic acids in both types of in vitro cultures were greater than in fruits (55.73Β mg/100Β g d.w.) and leaves (4.55Β mg/100Β g d.w.) of plants gowning in vivo. Chlorogenic acid and salicylic acid were the main compounds identified in biomass extracts of shoot-differentiating callus cultures (max 22.60 and 21.17Β mg/100Β g d.w., respectively), while chlorogenic acid (max 38.43Β mg/100Β g d.w.) and protocatechuic acid (max 20.95Β mg/100Β g d.w.) prevailed in the extracts from undifferentiating callus cultures. Other compounds dominated in fruits, namely p-coumaric acid (23.36Β mg/100Β g d.w.) and syringic acid (14.96Β mg/100Β g d.w.). This is the first report on biochemical potential of cells from S. chinensis in vitro cultures to produce the biologically active phenolic acids. These are the first results on the analysis of this group of metabolites in overground parts of plants growing in vivo, too

    Do Twin Boundaries Always Strengthen Metal Nanowires?

    Get PDF
    It has been widely reported that twin boundaries strengthen nanowires regardless of their morphologyβ€”that is, the strength of nanowires goes up as twin spacing goes down. This article shows that twin boundaries do not always strengthen nanowires. Using classical molecular dynamics simulations, the authors show that whether twin boundaries strengthen nanowires depends on the necessary stress for dislocation nucleation, which in turn depends on surface morphologies. When nanowires are circular cylindrical, the necessary stress of dislocation nucleation is high and the presence of twin boundaries lowers this stress; twin boundaries soften nanowires. In contrast, when nanowires are square cylindrical, the necessary stress of dislocation nucleation is low, and a higher stress is required for dislocations to penetrate twin boundaries; they strengthen nanowires

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel Οˆβ€²β†’Ο€+Ο€βˆ’J/ψ(J/Οˆβ†’Ξ³ppΛ‰)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06Γ—1081.06\times 10^8 Οˆβ€²\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppΛ‰p\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861βˆ’13+6(stat)βˆ’26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Ξ“<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.)

    Get PDF
    Stigma and spikelet characteristics play an essential role in hybrid seed production. A mini-core of 90 accessions developed from USDA rice core collection was phenotyped in field grown for nine traits of stigma and spikelet and genotyped with 109 DNA markers, 108 SSRs plus an indel. Three major clusters were built upon Rogers’ genetic distance, indicative of indicas, and temperate and tropical japonicas. A mixed linear model combining PC-matrix and K-matrix was adapted for mapping marker-trait associations. Resulting associations were adjusted using false discovery rate technique. We identified 34 marker-trait associations involving 22 SSR markers for eight traits. Four markers were associated with single stigma exsertion (SStgE), six with dual exsertion (DStgE) and five with total exsertion. RM5_Chr1 played major role indicative of high regression with not only DStgE but also SStgE. Four markers were associated with spikelet length, three with width and seven with L/W ratio. Numerous markers were co-associated with multiple traits that were phenotypically correlated, i.e. RM12521_Chr2 associated with all three correlated spikelet traits. The co-association should improve breeding efficiency because single marker could be used to assist breeding for multiple traits. Indica entry 1032 (cultivar 50638) and japonica entry 671 (cultivar Linia 84 Icar) with 80.65 and 75.17% of TStgE, respectively are recommended to breeder for improving stigma exsertion

    Au Nanoparticles as Interfacial Layer for CdS Quantum Dot-sensitized Solar Cells

    Get PDF
    Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO)/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs) as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%). The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore