38 research outputs found

    Extraction of pure components from overlapped signals in gas chromatography-mass spectrometry (GC-MS)

    Get PDF
    Gas chromatography-mass spectrometry (GC-MS) is a widely used analytical technique for the identification and quantification of trace chemicals in complex mixtures. When complex samples are analyzed by GC-MS it is common to observe co-elution of two or more components, resulting in an overlap of signal peaks observed in the total ion chromatogram. In such situations manual signal analysis is often the most reliable means for the extraction of pure component signals; however, a systematic manual analysis over a number of samples is both tedious and prone to error. In the past 30 years a number of computational approaches were proposed to assist in the process of the extraction of pure signals from co-eluting GC-MS components. This includes empirical methods, comparison with library spectra, eigenvalue analysis, regression and others. However, to date no approach has been recognized as best, nor accepted as standard. This situation hampers general GC-MS capabilities, and in particular has implications for the development of robust, high-throughput GC-MS analytical protocols required in metabolic profiling and biomarker discovery. Here we first discuss the nature of GC-MS data, and then review some of the approaches proposed for the extraction of pure signals from co-eluting components. We summarize and classify different approaches to this problem, and examine why so many approaches proposed in the past have failed to live up to their full promise. Finally, we give some thoughts on the future developments in this field, and suggest that the progress in general computing capabilities attained in the past two decades has opened new horizons for tackling this important problem

    MMPs Regulate both Development and Immunity in the Tribolium Model Insect

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMPs) are evolutionarily conserved and multifunctional effector molecules in development and homeostasis. In spite of previous, intensive investigation in vitro and in cell culture, their pleiotrophic functions in vivo are still not well understood. METHODOLOGY/PRINCIPAL FINDINGS: We show that the genetically amenable beetle Tribolium castaneum represents a feasible model organism to explore MMP functions in vivo. We silenced expression of three insect-type Tribolium MMP paralogs and their physiological inhibitors, TIMP and RECK, by dsRNA-mediated genetic interference (RNAi). Knock-down of MMP-1 arrested development during pupal morphogenesis giving phenotypes with altered antennae, compound eyes, wings, legs, and head. Parental RNAi-mediated knock-down of MMP-1 or MMP-2 resulted in larvae with non-lethal tracheal defects and with abnormal intestines, respectively, implicating additional roles of MMPs during beetle embryogenesis. This is different to findings from the fruit fly Drosophila melanogaster, in which MMPs have a negligible role in embryogenesis. Confirming pleiotrophic roles of MMPs our results also revealed that MMPs are required for proper insect innate immunity because systemic knock-down of Tribolium MMP-1 resulted in significantly higher susceptibility to the entomopathogenic fungus Beauveria bassiana. Moreover, mRNA levels of MMP-1, TIMP, and RECK, and also MMP enzymatic activity were significantly elevated in immune-competent hemocytes upon stimulation. To confirm collagenolytic activity of Tribolium MMP-1 we produced and purified recombinant enzyme and determined a similar collagen IV degrading activity as observed for the most related human MMP, MMP-19. CONCLUSIONS/SIGNIFICANCE: This is the first study, to our knowledge, investigating the in vivo role of virtually all insect MMP paralogs along with their inhibitors TIMP and RECK in both insect development and immunity. Our results from the Tribolium model insect indicate that MMPs regulate tracheal and gut development during beetle embryogenesis, pupal morphogenesis, and innate immune defense reactions thereby revealing the evolutionarily conserved roles of MMPs

    Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies

    No full text
    The transport of warm and salty Indian Ocean waters into the Atlantic Ocean—the Agulhas leakage—has a crucial role in the global oceanic circulation1 and thus the evolution of future climate. At present these waters provide the main source of heat and salt for the surface branch of the Atlantic meridional overturning circulation (MOC)2. There is evidence from past glacial-to-interglacial variations in foraminiferal assemblages3 and model studies4 that the amount of Agulhas leakage and its corresponding effect on the MOC has been subject to substantial change, potentially linked to latitudinal shifts in the Southern Hemisphere westerlies5. A progressive poleward migration of the westerlies has been observed during the past two to three decades and linked to anthropogenic forcing6, but because of the sparse observational records it has not been possible to determine whether there has been a concomitant response of Agulhas leakage. Here we present the results of a high-resolution ocean general circulation model7, 8 to show that the transport of Indian Ocean waters into the South Atlantic via the Agulhas leakage has increased during the past decades in response to the change in wind forcing. The increased leakage has contributed to the observed salinification9 of South Atlantic thermocline waters. Both model and historic measurements off South America suggest that the additional Indian Ocean waters have begun to invade the North Atlantic, with potential implications for the future evolution of the MOC
    corecore