99 research outputs found

    Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data

    Get PDF
    BACKGROUND: In recent years, outcome prediction models using artificial neural network and multivariable logistic regression analysis have been developed in many areas of health care research. Both these methods have advantages and disadvantages. In this study we have compared the performance of artificial neural network and multivariable logistic regression models, in prediction of outcomes in head trauma and studied the reproducibility of the findings. METHODS: 1000 Logistic regression and ANN models based on initial clinical data related to the GCS, tracheal intubation status, age, systolic blood pressure, respiratory rate, pulse rate, injury severity score and the outcome of 1271 mainly head injured patients were compared in this study. For each of one thousand pairs of ANN and logistic models, the area under the receiver operating characteristic (ROC) curves, Hosmer-Lemeshow (HL) statistics and accuracy rate were calculated and compared using paired T-tests. RESULTS: ANN significantly outperformed logistic models in both fields of discrimination and calibration but under performed in accuracy. In 77.8% of cases the area under the ROC curves and in 56.4% of cases the HL statistics for the neural network model were superior to that for the logistic model. In 68% of cases the accuracy of the logistic model was superior to the neural network model. CONCLUSIONS: ANN significantly outperformed the logistic models in both fields of discrimination and calibration but lagged behind in accuracy. This study clearly showed that any single comparison between these two models might not reliably represent the true end results. External validation of the designed models, using larger databases with different rates of outcomes is necessary to get an accurate measure of performance outside the development population

    Building robust prediction models for defective sensor data using Artificial Neural Networks

    Get PDF
    Predicting the health of components in complex dynamic systems such as an automobile poses numerous challenges. The primary aim of such predictive systems is to use the high-dimensional data acquired from different sensors and predict the state-of-health of a particular component, e.g., brake pad. The classical approach involves selecting a smaller set of relevant sensor signals using feature selection and using them to train a machine learning algorithm. However, this fails to address two prominent problems: (1) sensors are susceptible to failure when exposed to extreme conditions over a long periods of time; (2) sensors are electrical devices that can be affected by noise or electrical interference. Using the failed and noisy sensor signals as inputs largely reduce the prediction accuracy. To tackle this problem, it is advantageous to use the information from all sensor signals, so that the failure of one sensor can be compensated by another. In this work, we propose an Artificial Neural Network (ANN) based framework to exploit the information from a large number of signals. Secondly, our framework introduces a data augmentation approach to perform accurate predictions in spite of noisy signals. The plausibility of our framework is validated on real life industrial application from Robert Bosch GmbH.Comment: 16 pages, 7 figures. Currently under review. This research has obtained funding from the Electronic Components and Systems for European Leadership (ECSEL) Joint Undertaking, the framework programme for research and innovation Horizon 2020 (2014-2020) under grant agreement number 662189-MANTIS-2014-

    A study to derive a clinical decision rule for triage of emergency department patients with chest pain: design and methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chest pain is the second most common chief complaint in North American emergency departments. Data from the U.S. suggest that 2.1% of patients with acute myocardial infarction and 2.3% of patients with unstable angina are misdiagnosed, with slightly higher rates reported in a recent Canadian study (4.6% and 6.4%, respectively). Information obtained from the history, 12-lead ECG, and a single set of cardiac enzymes is unable to identify patients who are safe for early discharge with sufficient sensitivity. The 2007 ACC/AHA guidelines for UA/NSTEMI do not identify patients at low risk for adverse cardiac events who can be safely discharged without provocative testing. As a result large numbers of low risk patients are triaged to chest pain observation units and undergo provocative testing, at significant cost to the healthcare system. Clinical decision rules use clinical findings (history, physical exam, test results) to suggest a diagnostic or therapeutic course of action. Currently no methodologically robust clinical decision rule identifies patients safe for early discharge.</p> <p>Methods/design</p> <p>The goal of this study is to derive a clinical decision rule which will allow emergency physicians to accurately identify patients with chest pain who are safe for early discharge. The study will utilize a prospective cohort design. Standardized clinical variables will be collected on all patients at least 25 years of age complaining of chest pain prior to provocative testing. Variables strongly associated with the composite outcome acute myocardial infarction, revascularization, or death will be further analyzed with multivariable analysis to derive the clinical rule. Specific aims are to: i) apply standardized clinical assessments to patients with chest pain, incorporating results of early cardiac testing; ii) determine the inter-observer reliability of the clinical information; iii) determine the statistical association between the clinical findings and the composite outcome; and iv) use multivariable analysis to derive a highly sensitive clinical decision rule to guide triage decisions.</p> <p>Discussion</p> <p>The study will derive a highly sensitive clinical decision rule to identify low risk patients safe for early discharge. This will improve patient care, lower healthcare costs, and enhance flow in our busy and overcrowded emergency departments.</p

    Pretest probability assessment derived from attribute matching

    Get PDF
    BACKGROUND: Pretest probability (PTP) assessment plays a central role in diagnosis. This report compares a novel attribute-matching method to generate a PTP for acute coronary syndrome (ACS). We compare the new method with a validated logistic regression equation (LRE). METHODS: Eight clinical variables (attributes) were chosen by classification and regression tree analysis of a prospectively collected reference database of 14,796 emergency department (ED) patients evaluated for possible ACS. For attribute matching, a computer program identifies patients within the database who have the exact profile defined by clinician input of the eight attributes. The novel method was compared with the LRE for ability to produce PTP estimation <2% in a validation set of 8,120 patients evaluated for possible ACS and did not have ST segment elevation on ECG. 1,061 patients were excluded prior to validation analysis because of ST-segment elevation (713), missing data (77) or being lost to follow-up (271). RESULTS: In the validation set, attribute matching produced 267 unique PTP estimates [median PTP value 6%, 1(st)–3(rd )quartile 1–10%] compared with the LRE, which produced 96 unique PTP estimates [median 24%, 1(st)–3(rd )quartile 10–30%]. The areas under the receiver operating characteristic curves were 0.74 (95% CI 0.65 to 0.82) for the attribute matching curve and 0.68 (95% CI 0.62 to 0.77) for LRE. The attribute matching system categorized 1,670 (24%, 95% CI = 23–25%) patients as having a PTP < 2.0%; 28 developed ACS (1.7% 95% CI = 1.1–2.4%). The LRE categorized 244 (4%, 95% CI = 3–4%) with PTP < 2.0%; four developed ACS (1.6%, 95% CI = 0.4–4.1%). CONCLUSION: Attribute matching estimated a very low PTP for ACS in a significantly larger proportion of ED patients compared with a validated LRE

    A simple statistical model for prediction of acute coronary syndrome in chest pain patients in the emergency department

    Get PDF
    BACKGROUND: Several models for prediction of acute coronary syndrome (ACS) among chest pain patients in the emergency department (ED) have been presented, but many models predict only the likelihood of acute myocardial infarction, or include a large number of variables, which make them less than optimal for implementation at a busy ED. We report here a simple statistical model for ACS prediction that could be used in routine care at a busy ED. METHODS: Multivariable analysis and logistic regression were used on data from 634 ED visits for chest pain. Only data immediately available at patient presentation were used. To make ACS prediction stable and the model useful for personnel inexperienced in electrocardiogram (ECG) reading, simple ECG data suitable for computerized reading were included. RESULTS: Besides ECG, eight variables were found to be important for ACS prediction, and included in the model: age, chest discomfort at presentation, symptom duration and previous hypertension, angina pectoris, AMI, congestive heart failure or PCI/CABG. At an ACS prevalence of 21% and a set sensitivity of 95%, the negative predictive value of the model was 96%. CONCLUSION: The present prediction model, combined with the clinical judgment of ED personnel, could be useful for the early discharge of chest pain patients in populations with a low prevalence of ACS

    Air ambulance flights in northern Norway 2002-2008. Increased number of secondary fixed wing (FW) operations and more use of rotor wing (RW) transports

    Get PDF
    Air ambulance service in Norway has been upgraded during the last years. European regulations concerning pilots’ working time and new treatment guidelines/strategies have called for more resources. The objective was to describe and analyse the two supplementary air ambulance [fixed wing (FW) and rotor wing (RW)] alternatives’ activity during the study period (2002-2008). Furthermore we aimed to compare our findings with reports from other north European regions. This is a retrospective analysis. The air ambulance fleet’s activity according to the electronic patient record database of “Luftambulansetjenesten ANS” (LABAS) was analysed. The subject was the fleet’s operations in northern Norway, logistics, and patients handled. Type of flight, distances, frequency, and patients served were the main outcome measures. A significant increase (45%) in the use of RW and a shift in FW operations (less primary and more secondary) were revealed. The shift in FW operations reflected the centralisation of several health care services [i.e. percutaneous cardiac intervention (PCI), trauma, and cancer surgery] during the study period. Cardiovascular disease (CVD) and injuries were the main diagnoses and constituted half of all operations. CVD was the most common cause of FW operations and injuries of the RW ones. The number of air ambulance operations was 16 per 1,000 inhabitants. This was more frequent than in other north European regions. The use of air ambulances and especially RW was significantly increased during the study period. The change in secondary FW operations reflected centralisation of medical care. When health care services are centralised, air ambulance services must be adjusted to the new settings

    Context-sensitive autoassociative memories as expert systems in medical diagnosis

    Get PDF
    BACKGROUND: The complexity of our contemporary medical practice has impelled the development of different decision-support aids based on artificial intelligence and neural networks. Distributed associative memories are neural network models that fit perfectly well to the vision of cognition emerging from current neurosciences. METHODS: We present the context-dependent autoassociative memory model. The sets of diseases and symptoms are mapped onto a pair of basis of orthogonal vectors. A matrix memory stores the associations between the signs and symptoms, and their corresponding diseases. A minimal numerical example is presented to show how to instruct the memory and how the system works. In order to provide a quick appreciation of the validity of the model and its potential clinical relevance we implemented an application with real data. A memory was trained with published data of neonates with suspected late-onset sepsis in a neonatal intensive care unit (NICU). A set of personal clinical observations was used as a test set to evaluate the capacity of the model to discriminate between septic and non-septic neonates on the basis of clinical and laboratory findings. RESULTS: We show here that matrix memory models with associations modulated by context can perform automatic medical diagnosis. The sequential availability of new information over time makes the system progress in a narrowing process that reduces the range of diagnostic possibilities. At each step the system provides a probabilistic map of the different possible diagnoses to that moment. The system can incorporate the clinical experience, building in that way a representative database of historical data that captures geo-demographical differences between patient populations. The trained model succeeds in diagnosing late-onset sepsis within the test set of infants in the NICU: sensitivity 100%; specificity 80%; percentage of true positives 91%; percentage of true negatives 100%; accuracy (true positives plus true negatives over the totality of patients) 93,3%; and Cohen's kappa index 0,84. CONCLUSION: Context-dependent associative memories can operate as medical expert systems. The model is presented in a simple and tutorial way to encourage straightforward implementations by medical groups. An application with real data, presented as a primary evaluation of the validity and potentiality of the model in medical diagnosis, shows that the model is a highly promising alternative in the development of accuracy diagnostic tools
    corecore