73 research outputs found

    ‘ZhongPan 101’ and ‘ZhongPan 102’: Two Flat Peach Cultivars From China

    Get PDF
    Flat peach [Prunus persica (L.) Batsch var. platycarpa] is a variant of ordinary peach with a unique flat shape. It is well known for its shape and delicious fruits (Miao et al. 2022). Although flat peach has a long history of cultivation in China, until the beginning of the 20th century, flat peach was only distributed as a minor variety in the main peach-producing areas of China. In terms of flat peach cultivars, only 46 of the 709 peach cultivars listed in Peach Genetic Resource in China (Wang et al. 2012) are flat peach cultivars, and most of them are flat landraces. Several problems have been noted previously in flat peach cultivars, including poor closure of the blossom end (blossom-end scarring in mild cases and cracking in severe cases), cracked stone in some cultivars (loss of commercial value in severe cases), nonsymmetrical fruit shape, small flesh, and low yield (Wang 2021). Many of the shortcomings of flat peach cultivars are intrinsic problems of the cultivars, which are difficult to improve through cultivation measures. This is the key factor limiting the large-scale promotion of flat peach cultivation in China. For many years, peach breeders in China have been devoted to the genetic improvement of flat peach, and some improved flat peach cultivars have been released, for instance, ‘Pocket Zaoban’ (Jiang et al. 2007) and ‘124 Pantao’ (Ma et al. 2003). However, problems persist in these cultivars, including small fruits, soft flesh, and blossom-end cracks. Only a few flat peach cultivars have good overall performance. In recent years, the Zhengzhou Fruit Research Institute (ZFRI), Chinese Academy of Agricultural Sciences (CAAS), identified genetic sources of flat peach with slow or nonmelting flesh, a well-closed blossom end, and little or no cracking. They were hybridized with high-quality peach and nectarine cultivars or selections. After multiple generations of improvement, breakthroughs were made in early flat peach breeding, and a series of flat peach cultivars with excellent comprehensive traits have been produced. These cultivars are favored by fruit farmers in the main peach-producing areas in China. Hence, the main problems in flat peach cultivation are expected to be solved, which will help expand the cultivation area of flat peach. ‘ZhongPan 101’ and ‘ZhongPan 102’ are two yellow-flesh flat peach cultivars 45 released from the ZFRI, CAAS. These two cultivars produce large, well-shaped, high-quality fruits with a completely closed stylar end and high yield. Three years of evaluation has confirmed that the peach trees of the two cultivars are stable. ‘ZhongPan 101’ and ‘ZhongPan 102’ were well adapted to climate of the middle and lower reaches of the Yellow River; have performed well in Henan, Jiangsu, and Anhui Provinces; and are suggested for trial wherever ‘ZhongYouPan 9’ is grown

    Response of the Chinese soft-shelled turtle to acute heat stress: Insights from the systematic antioxidant defense

    Get PDF
    Understanding the responses of animals to acute heat stress can help to reveal and predict the effect of more frequent extreme hot weather episodes on animal populations and ecosystems in the content of global climate change. Antioxidant defenses can help to protect animals against oxidative stress caused by intense temperature variation. In the present study, systematic antioxidant responses to acute heat stress (?15°C and maintained for 12 h) and subsequent recovery were assessed by evaluating gene transcript levels and relative enzyme activities in tissues of Pelodiscus sinensis, a subtropical freshwater turtle. Targets included nuclear factor erythroid 2-related factor 2 (Nrf2, the upstream transcription factor), antioxidant enzymes, and the glutathione (GSH) and ascorbic acid (AA) systems. Results showed three main patterns of expression change among antioxidant genes: (1) gene expression of Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase 4 (GPx 4), and catalase (CAT) increased in response to heat stress or recovery in the liver; (2) transcripts of most genes did not change in brain, liver, and kidney of P. sinensis; and (3) expression of several GST isoforms were affected by heat stress or recovery in brain and kidney. However, relative enzyme activities involved in antioxidant defense were little affected by acute heat stress and recovery, indicating a relatively conservative antioxidant response in P. sinensis. Furthermore, results for malondialdehyde (MDA) levels indicated that acute heat stress and recovery did not cause a net increase in oxidative damage in turtle tissues and, in particular, MDA levels in spleen decreased along with increased splenic ascorbic acid concentration. Overall, the present study revealed a conservative antioxidant response in P. sinensis, which may be indicative of a high basal stress tolerance and relate with adaptation to climate change in freshwater turtles

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin

    Get PDF
    Recent genomic analyses of pathologically-defined tumor types identify “within-a-tissue” disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head & neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multi-platform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All datasets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Positive or negative? The shell alters the relationship among behavioral defense strategy, energy metabolic levels and antioxidant capacity in freshwater turtles

    Get PDF
    Abstract Background The relationships among energy metabolic levels, behavioral and other physiological traits help to determine the trade-off of energy allocation between different traits and the evolution of life-history driven by natural selection. However, these relationships may be distinctive in selected animal taxa because of their unique traits. In the present study, the relationships among energy metabolic levels, behavioral defense strategies, and antioxidant capacity were explored in three freshwater turtle species with different shell morphologies, by assessing responses to attack, righting time, shell morphology, whole-organism metabolic rates, tissue metabolic enzyme activities and antioxidant levels. Results The Chinese three-keeled pond turtles, Chinemys reevesii, showed a passive defense strategy, relatively larger shells, a higher resting metabolic rate (RMR) and higher antioxidant levels compared to the snapping turtle, Chelydra serpentina, or the Chinese soft-shelled turtle, Pelodiscus sinensis. These latter two species both showed an active defense strategy, a higher factorial aerobic scope and better muscle anaerobic metabolic capacity but relatively smaller shells, lower RMR and antioxidant capacity. Conclusion Our results indicate a negative relationship between RMR and activity levels in behavioral defense strategies along small-big shell continuum among the three turtle species. We also found a positive relationship between antioxidant capacity and energy metabolism but a negative one between antioxidant capacity and activity levels in defense strategies. The present study indicated a role of turtle shell in forming unique relationship between energy metabolic levels and behaviors in freshwater turtle taxa and a possible trade-off between the maintenance of physiological homeostasis and activity levels in energy allocation
    corecore