13,520 research outputs found

    Optimal discrimination of single-qubit mixed states

    Get PDF
    We consider the problem of minimum-error quantum state discrimination for single-qubit mixed states. We present a method which uses the Helstrom conditions constructively and analytically; this algebraic approach is complementary to existing geometric methods, and solves the problem for any number of arbitrary signal states with arbitrary prior probabilities.Comment: 8 pages, 1 figur

    Optimal sequential measurements for bipartite state discrimination

    Get PDF
    State discrimination is a useful test problem with which to clarify the power and limitations of different classes of measurement. We consider the problem of discriminating between given states of a bipartite quantum system via sequential measurement of the subsystems, with classical feed-forward of measurement results. Our aim is to understand when sequential measurements, which are relatively easy to implement experimentally, perform as well, or almost as well, as optimal joint measurements, which are in general more technologically challenging. We construct conditions that the optimal sequential measurement must satisfy, analogous to the well-known Helstrom conditions for minimum error discrimination in the unrestricted case. We give several examples and compare the optimal probability of correctly identifying the state via global versus sequential measurement strategies

    Biochemical and biophysical studies of haemosiderin and ferritin

    Get PDF
    Imperial Users onl

    Creating a community of learners among college faculty through the use of reflective practice

    Get PDF

    Studying a relativistic field theory at finite chemical potential with the density matrix renormalization group

    Full text link
    The density matrix renormalization group is applied to a relativistic complex scalar field at finite chemical potential. The two-point function and various bulk quantities are studied. It is seen that bulk quantities do not change with the chemical potential until it is larger than the minimum excitation energy. The technical limitations of the density matrix renormalization group for treating bosons in relativistic field theories are discussed. Applications to other relativistic models and to nontopological solitons are also suggested.Comment: 9 pages, 5 figures; v2: title changed; references added, conclusions expanded, to be published in PR

    Evolution and diversity of secretome genes in the apicomplexan parasite Theileria annulata

    Get PDF
    <b>BACKGROUND</b>: Little is known about how apicomplexan parasites have evolved to infect different host species and cell types. Theileria annulata and Theileria parva invade and transform bovine leukocytes but each species favours a different host cell lineage. Parasite-encoded proteins secreted from the intracellular macroschizont stage within the leukocyte represent a critical interface between host and pathogen systems. Genome sequencing has revealed that several Theileria-specific gene families encoding secreted proteins are positively selected at the inter-species level, indicating diversification between the species. We extend this analysis to the intra-species level, focusing on allelic diversity of two major secretome families. These families represent a well-characterised group of genes implicated in control of the host cell phenotype and a gene family of unknown function. To gain further insight into their evolution and function, this study investigates whether representative genes of these two families are diversifying or constrained within the T. annulata population. <b>RESULTS</b>: Strong evidence is provided that the sub-telomerically encoded SVSP family and the host-nucleus targeted TashAT family have evolved under contrasting pressures within natural T. annulata populations. SVSP genes were found to possess atypical codon usage and be evolving neutrally, with high levels of nucleotide substitutions and multiple indels. No evidence of geographical sub-structuring of allelic sequences was found. In contrast, TashAT family genes, implicated in control of host cell gene expression, are strongly conserved at the protein level and geographically sub-structured allelic sequences were identified among Tunisian and Turkish isolates. Although different copy numbers of DNA binding motifs were identified in alleles of TashAT proteins, motif periodicity was strongly maintained, implying conserved functional activity of these sites. <b>CONCLUSIONS</b>: This analysis provides evidence that two distinct secretome genes families have evolved under contrasting selective pressures. The data supports current hypotheses regarding the biological role of TashAT family proteins in the management of host cell phenotype that may have evolved to allow adaptation of T. annulata to a specific host cell lineage. We provide new evidence of extensive allelic diversity in representative members of the enigmatic SVSP gene family, which supports a putative role for the encoded products in subversion of the host immune response

    Tabulation and summary of thermodynamic effects data for developed cavitation on ogive-nosed bodies

    Get PDF
    Thermodynamic effects data for developed cavitation on zero and quarter caliber ogives in Freon 113 and water are tabulated and summarized. These data include temperature depression (delta T), flow coefficient (C sub Q), and various geometrical characteristics of the cavity. For the delta T tests, the free-stream temperature varied from 35 C to 95 C in Freon 113 and from 60 C to 125 C in water for a velocity range of 19.5 m/sec to 36.6 m/sec. Two correlations of the delta T data by the entrainment method are presented. These correlations involve different combinations of the Nusselt, Reynolds, Froude, Weber, and Peclet numbers and dimensionless cavity length

    Diversity in parasitic nematode genomes: the microRNAs of Brugia pahangi and Haemonchus contortus are largely novel

    Get PDF
    <b>BACKGROUND:</b> MicroRNAs (miRNAs) play key roles in regulating post-transcriptional gene expression and are essential for development in the free-living nematode Caenorhabditis elegans and in higher organisms. Whether microRNAs are involved in regulating developmental programs of parasitic nematodes is currently unknown. Here we describe the the miRNA repertoire of two important parasitic nematodes as an essential first step in addressing this question. <b>RESULTS:</b> The small RNAs from larval and adult stages of two parasitic species, Brugia pahangi and Haemonchus contortus, were identified using deep-sequencing and bioinformatic approaches. Comparative analysis to known miRNA sequences reveals that the majority of these miRNAs are novel. Some novel miRNAs are abundantly expressed and display developmental regulation, suggesting important functional roles. Despite the lack of conservation in the miRNA repertoire, genomic positioning of certain miRNAs within or close to specific coding genes is remarkably conserved across diverse species, indicating selection for these associations. Endogenous small-interfering RNAs and Piwi-interacting (pi)RNAs, which regulate gene and transposon expression, were also identified. piRNAs are expressed in adult stage H. contortus, supporting a conserved role in germline maintenance in some parasitic nematodes. <b>CONCLUSIONS:</b> This in-depth comparative analysis of nematode miRNAs reveals the high level of divergence across species and identifies novel sequences potentially involved in development. Expression of novel miRNAs may reflect adaptations to different environments and lifestyles. Our findings provide a detailed foundation for further study of the evolution and function of miRNAs within nematodes and for identifying potential targets for intervention
    corecore