
 
 
 
 
 

Weir, G., Barnett, S. M. and Croke, S. (2017) Optimal discrimination of 

single-qubit mixed states. Physical Review A: Atomic, Molecular and 

Optical Physics, 96(2), 022312. (doi:10.1103/PhysRevA.96.022312) 

 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 
http://eprints.gla.ac.uk/145050/        

 
 
 
 
 

 
Deposited on: 29 August 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk33640 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Enlighten: Publications

https://core.ac.uk/display/296197002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.96.022312
http://eprints.gla.ac.uk/145050/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Optimal discrimination of single-qubit mixed states

Graeme Weir,1, ∗ Stephen M. Barnett,1 and Sarah Croke1

1School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom

We consider the problem of minimum-error quantum state discrimination for single-qubit mixed
states. We present a method which uses the Helstrom conditions constructively and analytically;
this algebraic approach is complementary to existing geometric methods, and solves the problem for
any number of arbitrary signal states with arbitrary prior probabilities. It has long been known that
the minimum error probability is given by the trace of the Lagrange operator, Γ. The remarkable
feature of our approach is the central role played not by Γ, but by its inverse.

I. INTRODUCTION

A fundamental task in quantum theory, and quan-
tum information in particular, is that of distin-
guishing between different possible preparation pro-
cedures: quantum state discrimination. In quan-
tum theory measurement is an active, rather than
a passive process: there are unavoidable restrictions
on which observables may be jointly measured, and
generically, measurement causes disturbance. The
limits to state discrimination thus are inextricably
linked with the ultimate limits of measurement in
quantum theory. The problem is thus ubiquitous in
the field of quantum information and indeed more
broadly, with applications including, for example,
discrimination of operations in quantum metrology
[1], bounding the dimension of a system Hilbert
space given incomplete information [2], sharing in-
formation through imperfect cloning [3–6], and oth-
ers [1].

The problem of quantum state discrimination is
perhaps most naturally expressed as a problem in
quantum communications, in which it is stated as
follows: the quantum states {ρj} make up an “al-
phabet” which can be used to craft a message. A
sender, Alice, sends a message to a receiver, Bob,
in which each ρj has some a priori probability pj
of being sent. Unless the signal states are mutually
orthogonal, there will be some error in any attempt
to determine which state was sent. If Bob knows
the set of signal states and their probabilities, what
measurement strategy should he use in order to op-
timally decipher Alice’s message?

The study of quantum state discrimination has a
long history, beginning with the pioneering work of
Helstrom, Holevo, and others in the 1960s and 1970s
[7, 8], who sought to understand the fundamental
limits imposed by quantum theory on optical com-
munications. Since then there has been much fur-
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ther development, with the construction of strategies
based on various figures of merit [4–7, 9–25], as well
as ones that interpolate between these [26, 27]. We
are interested here in the minimum error strategy,
based on perhaps the most natural figure of merit:
what is the highest possible probability of correctly
identifying the state?

Necessary and sufficient conditions which an op-
timal measurement must satisfy are known [7], and
further, the problem may be cast as a semi-definite
program, which may be solved efficiently numeri-
cally [28]. If an analytical solution is desired, these
conditions are most naturally used to check optimal-
ity of a candidate measurement procedure, but are
not constructive. For some time therefore almost
all known analytic solutions were in special cases in
which a symmetry property of the states could be
used to guide the design of optimal measurements
[19, 20, 29, 30]. Some progress has since been made,
however, in employing these conditions to construct
solutions, and in the qubit case in particular, the
Bloch sphere representation proves useful in provid-
ing a geometric picture [21, 22, 31–33]. Methods of
constructing optimal measurements were given first
for equi-probable pure qubit states [31], and later
for mixed states and for arbitrary prior probabil-
ities [21, 22, 32, 34], the latter using a geometric
approach.

In this paper, we give an alternative method of
constructing optimal measurements from the mini-
mum error conditions. Previous work has demon-
strated that finding a single operator Γ, sometimes
referred to as the Lagrange operator, is equivalent to
solving the minimum error discrimination problem:
the trace of this operator gives the optimum proba-
bility of success, and optimal measurements may be
readily constructed once it is known. We construct
linear constraints on this operator and its inverse,
which in the qubit case may be readily solved for
Γ and thereby the optimal measurement. Our alge-
braic approach is complementary to the geometric
approach presented in [22], the results of which were
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applied to explicitly calculate the optimal probabil-
ity of correct discrimination for the case of three
mixed qubit states in [21]. In contrast to the exist-
ing approaches, our method reduces the problem of
state discrimination to the simpler one of solving a
series of linear equations.

II. THE MINIMUM-ERROR CONDITIONS

We begin by introducing the minimum-error con-
ditions [7]. We wish to distinguish between states
{ρi}, with a priori probabilities pi. Any physically
allowed measurement may be described mathemati-
cally as a probability operator measure (POM) [35],
also known as a positive operator-valued measure
(POVM) [36], that is a set of operators {πi} satisfy-
ing:

πi ≥ 0∑
i

πi = 1.

The Born rule, expressing the probability of obtain-
ing outcome j in a measurement on a system pre-
pared in state ρ is given by:

P(j|ρ) = Tr(ρπj), (1)

and the above conditions ensure that these prob-
abilities are positive and sum to 1. A “click” at
the detector corresponding to element πj is taken
to indicate that the state ρj was sent. Bob’s prob-
ability of correctly guessing the state Alice sent is
then given by Pcorr =

∑n−1
i=0 pi Tr(πiρi), and it is

this that we wish to maximise in the minimum er-
ror problem (Bob’s probability of error, of course, is
given by 1 − Pcorr). Clearly to distinguish between
n states we therefore need a measurement with at
most n outcomes. The number of outcomes may be
less than n (or equivalently, some of the operators
πi may be zero) if Bob’s measurement procedure is
such that some states are never identified. Indeed
in some cases the optimal measurement is simply
to always guess the most likely state [37] and never
identify any other state.

The solution to the problem of minimum-error
quantum state discrimination is equivalent to find-
ing a POVM satisfying the conditions [7, 24, 25]:

Γ− pjρj ≥ 0 ∀j, (2)

πi(piρi − pjρj)πj = 0 ∀i, j, (3)

where Γ =
∑
i piρiπi. The first condition is both

necessary and sufficient for {πi} to describe an op-
timal measurement procedure, and we note that the

conditions are not independent; the second, which
is necessary but not sufficient, follows from the first.
It is useful, however, to give both conditions, be-
cause often the second is more convenient to use
in practice. Note that Γ is a Hermitian operator
Γ = Γ† =

∑
i piπiρi, which follows from condition

(2), and may be seen explicitly by summing over
both i and j in condition (3). An alternative con-
dition is obtained by summing over i in eqn. (3),
giving:

(Γ− pjρj)πj = 0. (4)

This is a necessary (but not sufficient) condition on
any optimal measurement {πj}, and is central to our
and other methods [21, 22], allowing us to construct
operators πj satisfying Γ =

∑
i piρiπi once a can-

didate Γ is given. Indeed, both πj and Γ − pjρj
[according to inequality (2)] are positive operators,
and thus eqn. (4) can hold only if they are orthog-
onal, that is, πj is entirely within the kernel (or the
eigensubspace corresponding to zero eigenvalue) of
Γ − pjρj . It follows that πj can be non-zero only if
Γ−pjρj has at least one zero eigenvalue. We further
note that

Tr(Γ) =

n−1∑
i=0

pi Tr(πiρi) = Pcorr. (5)

Therefore if we can find Γ, we find both the opti-
mal probability of success, and a way of constructing
the optimal measurement operators. The problem
of finding the optimal measurement {πi}, a set of n
operators, is thus equivalent to finding a single posi-
tive operator Γ satisfying the condition (2) and from
which operators {πj} satisfying (4) and forming a
POVM may be constructed. Indeed the so-called
dual problem in the semi-definite programming ap-
proach consists of finding the operator Γ with mini-
mum trace that satisfies condition (2) for all j. Fur-
ther, as is stressed by Bae [38], the operator Γ is
unique for a given set of states, while the optimal
measurement may not be - for example, in the case
of N ≥ 4 symmetric states [15, 29, 31].

III. QUBIT STATE DISCRIMINATION

There has recently been much progress in using
the Helstrom conditions constructively, to find op-
timal measurements, with particular success in the
qubit case. Hunter was perhaps the first to attempt
this in a systematic way, showing how to construct
optimal measurements for all sets of equi-probable
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pure states [31]. Samsonov later presented an algo-
rithmic solution to the Helstrom conditions for pure
qubits with arbitrary prior probabilities [33]. De-
coninck and Terhal gave an elegant geometric inter-
pretation of the Lagrange operator Γ in the Bloch
sphere picture as the minimum enclosing ball of a
suitably defined set of balls. A similar interpretation
can be given in higher dimensions [39]. This gives
rise to a linear time algorithm for a set of N arbi-
trary qubit states with arbitrary probabilities. Re-
cently Bae used the so-called Karush-Kuhn-Tucker
(KKT) conditions from semi-definite programming
to define complementary states {σj} with weights
rj such that

Γ = piρi + riσi = pjρj + rjσj .

The geometric structure of the complementary
states σj may be deduced from the conditions and
the geometric structure of the signal states ρj , and
in turn used to construct Γ. Bae discusses the qubit
case, in which the Bloch sphere provides a conve-
nient geometric picture, and the full details for three
mixed qubit states were later calculated by Ha and
Kwon [21].

We begin with some general considerations con-
cerning the qubit state discrimination problem, and
then discuss our method, which constructs Γ di-
rectly, without reference to complementary states.
Firstly, we note that for each j the operator Γ−pjρj
can have two, one, or no zero eigenvalues, corre-
sponding to the zero operator, a rank-one operator,
and a positive-definite operator respectively:

1. If Γ − pjρj = 0 for some j, then Γ = pjρj ,
which can only hold if pjρj − pkρk ≥ 0 for all
k. The no measurement strategy is then an
optimal measurement, πk = Iδjk [37].

2. Γ − pjρj has a single zero eigenvalue. If πj is
non-zero, it is a weighted projector onto the
corresponding eigenstate.

3. If Γ − pjρj is positive definite (all eigenvalues
strictly greater than zero), then according to
condition (4) it follows that πj = 0 for every
optimal measurement, and the corresponding
state is never identified.

Given a set of qubit states {ρj} with a priori prob-
abilities pj , it is easily checked whether for some j

pjρj − pkρk ≥ 0, ∀k. (6)

If this does hold for some j, the optimal strategy is
not to measure at all and simply guess ρj . For all

other ensembles, it follows that the optimal measure-
ment is made up of rank-one weighted projectors,

πj = cj |φj〉〈φj |

for some cj satisfying 0 ≤ cj ≤ 1, and where |φj〉
is the eigenstate of Γ − pjρj corresponding to the
zero eigenvalue. Note that this is completely general
for qubits, and holds whether ρj are pure or mixed
states. Thus, for an optimal measurement each op-
erator πj is uniquely defined, up to a multiplying
factor. There may however be more than one way
of choosing the coefficients cj such that the πj thus
found sum to the identity.

Secondly, we note that for minimum error discrim-
ination of an arbitrary set of qubit states there al-
ways exists an optimal measurement with at most
four outcomes. Intuitively, the constraint

∑
i πi =

1 contains only d2 independent linear constraints,
where d is the dimension of our space: if a set of
N > d2 elements {πj} satisfies this, there is always a
subset of these which, when appropriately weighted,
also forms a resolution of the identity. A measure-
ment with > d2 outcomes can always be decomposed
as a probabilistic mixture of measurements with at
most d2 outcomes. If the mixture results in an op-
timal procedure, then any of the component mea-
surements must also be optimal [31, 32]. A more
complete proof of this may be found in the litera-
ture, e.g., [40].

Finally, note that the number of outcomes in our
optimal measurement corresponds to the number of
states that are identified with non-zero probability
by the measurement: additional states are never
identified. Denoting the number of outcomes k, the
cases k = 1 and k = 2 are well-known, as these
correspond to the no-measurement strategy and the
Helstrom two-state discrimination measurement re-
spectively [7, 41]. In the cases k = 3 and k = 4 it
is more difficult to find optimal measurements, al-
though as discussed above, strategies for these cases
have been recently suggested.

For qubits, the Pauli operators together with the
identity form a convenient basis in which to express
any operator on the space. Thus, for example, we
can write

Γ =
1

2
(a1+~b · ~σ), (7)

where a > 0,~b is a real three-dimensional vector, and
~σ is the vector of Pauli operators: ~σ = (σx, σy, σz).
It will be convenient in what follows to also use such
a representation for the inverse Γ−1, and it is easily
verified that:

Γ−1 =
2

a2 − |b|2
(a1−~b · ~σ). (8)
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Note that Γ is a strictly positive operator in the
space spanned by the states to be discriminated, and
so the inverse is always well-defined, as is the square-
root, which we will use later. We thus need four
parameters to completely specify Γ, and we discuss
now how to construct four constraints, which are
readily inverted to construct Γ.

Suppose there is an optimal measurement which
identifies k > 2 states: we will show that for each
of these we may obtain one constraint on the pa-
rameters of Γ. It is of course not obvious a priori
which states will be identified by an optimal mea-
surement; however, we can construct a candidate Γ,
under the assumption that a particular subset of our
states are identified in an optimal measurement, and
then verify that this results in a physically allowed
measurement procedure. We will return to this later.
According to the discussion above therefore, for each
of these k states the operator Γ − pjρj has a single
zero eigenvalue. Let us consider first the pure state
case: ρj = |ψj〉〈ψj |. If we pre- and post-multiply
condition (2) by Γ−1/2 we find:

1− pjΓ−1/2|ψj〉〈ψj |Γ−1/2 ≥ 0.

We further require that this operator has exactly
one zero eigenvalue, which in turn requires that the
second term has modulus 1:

pj〈ψj |Γ−1|ψj〉 = 1. (9)

A similar relation was pointed out by Mochon [29],
who discussed the inverse problem of characterising
the sets of states and corresponding probabilities for
which a given measurement procedure was optimal,
although it does not seem to have been used con-
structively in the literature. Thus we find

2pj〈ψj |(a1−~bσ̂)|ψj〉 = a2 − |b|2. (10)

Alternatively, if ρj = |ψj〉〈ψj | has Bloch vector r̂j (a
unit vector as ρj is a pure state), ρj = 1

2 (1 + r̂j · ~σ),
we may write:

2pj

(
a− r̂j ·~b

)
= a2 − |b|2. (11)

Each state gives rise to one such constraint, resulting
in k independent constraints on Γ.

This procedure is readily adapted to apply also to
mixed states for the qubit case. Note that for qubit
states, every mixed state can be written as a mixture
of a pure state and the identity: ρj = αj |ψj〉〈ψj | +
βj

1
21, where αj + βj = 1. The requirement that

Γ− pjρj ≥ 0 then becomes:

Γ− 1

2
pjβj1− pjαj |ψj〉〈ψj | ≥ 0,

and using the same reasoning as previously, if we re-
quire this operator have exactly one zero eigenvalue
we obtain:

pjαj〈ψj |
(

Γ− 1

2
pjβj1

)−1
|ψj〉 = 1.

Explicitly, this gives:

2pjαj〈ψj |[(a− pjβj)1−~b · ~σ]|ψj〉
= (a− pjβj)2 − |b|2, (12)

and after a litte rearranging, again writing
|ψj〉〈ψj | = 1

2 (1 + r̂j · ~σ), we find

2pj

(
a− αj r̂j ·~b− pjβj(αj +

1

2
βj)

)
= a2 − |b|2.

(13)
If there are k states identified by the optimal mea-
surement this procedure, in both the pure state and
mixed state case, gives k equations for the parame-
ters of Γ. Clearly if k = 4 this is enough to construct
Γ. We further note that in equations (11) and (13)
the non-linear right hand side is independent of j,
thus we can easily take linear combinations to obtain
k − 1 linear equations. For k = 4 these are readily
solved to write all parameters in terms of a single
one, e.g. a, which is finally determined by solving
one quadratic equation.

Thus we can construct optimal measurements
with k = 1, 2, or 4 outcomes. For k = 3 we do
not yet have enough constraints to determine Γ; a
further constraint, however, is readily constructed,
as we now discuss. We first note that for the special
case in which three signal states lie in an equatorial
plane of the Bloch sphere (as in [19, 42]), we know
from symmetry that the POVM elements, and there-
fore also Γ, must lie in the same plane as the signal
states, thus giving us our final constraint. More gen-
erally, for the case of three equiprobable pure qubit
states it is always possible to choose a representa-
tion in which the states sit at the same latitude of
the Bloch sphere. The optimal measurement opera-
tors πj then lie in the equator of the sphere, and Γ
has the same latitude as the signal states [31].

We can generalize this idea to both pure and
mixed states, and to non-equal prior probabilities.
We first note that for a three outcome measurement,
all three elements of the POVM must lie in an equa-
torial plane of the Bloch sphere in order to form a
resolution of the identity. Without loss of general-
ity we choose our axes so that this is the z = 0
plane. That is, we can always choose our axes so

that πj = 1
2

(
cj1+ ~dj · ~σ

)
, with djz = 0, ∀j. Refer-
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ring now to condition 4, it follows that

Γ− pjρj ∝
1

2

(
cj1− ~dj · ~σ

)
,

and thus 〈Γσz〉− pj〈ρjσz〉 = 0. Finally we therefore
require

bz = pj〈ρjσz〉 = pjαj r̂jz, ∀ j,

where as before ρj = 1
2 (1+ αj r̂j · ~σ). Thus if we

define our z-axis to be such that the z-component of
pjρj is the same for each of the three signal states
identified, then Γ also has the same z-component,
and the optimal measurement operators lie in the
equatorial plane. Note that a similar discussion may
be found in [26].

Thus for a given set of qubit states {ρi} with ar-
bitrary priors {pi}, if there exists an optimal min-
imum error measurement which identifies a subset
of k = 1, 2, 3, 4 of these states, we have shown how
to construct Γ, which in turn allows us to construct
the optimal measurement. We illustrate below in
an example how this may be employed in practice
to find optimal measurements, and discuss later the
problem of how we can know in general which states
are identified by an optimal measurement.

IV. EXAMPLE

To illustrate our method, we consider the problem
of discriminating between three pure states which
are mirror-symmetrically arranged on the equator
of the Bloch sphere, previously investigated by An-
dersson, et. al. [19]. The states are:

|ψ0〉 = |+〉 =
1√
2

(|0〉+ |1〉),

|ψ1〉 =
1√
2

(|0〉+ eiθ|1〉),

|ψ2〉 =
1√
2

(|0〉+ e−iθ|1〉),

and these occur with a priori probabilities
p0 = 1− 2p, p1 = p2 = p, with p ∈ [0, 12 ]. The
so-called trine ensemble occurs at θ = 2π

3 [42].
We begin by noting that as the states are all

pure it is not possible to satisfy conditions (6) and
the no-measurement solution is never optimal. We
next check to see when a two outcome measure-
ment is optimal. Note that due to the symmetry
the only sensible two-outcome measurement is one
distinguishing |ψ1〉 and |ψ2〉: the optimal such mea-
surement is a projective measurement in the eigen-
basis of σy; πi = |φi〉〈φi|, where |φ1〉 = 1√

2
(|0〉+i|1〉)

and |φ2〉 = 1√
2
(|0〉 − i|1〉). It is straight-forward to

calculate Γ2−element, and we note that condition 2
is satisfied for j = 1, 2 by construction. In order to
check this condition for j = 0, it is enough to verify
that det (Γ2−element − p0ρ0) ≥ 0. We find as in [19],
that this holds when

p ≥ 1

2 + cos( θ2 )[cos( θ2 ) + sin( θ2 )]
. (14)

The corresponding optimal probability of correctly
identifying the state is given by

Tr(Γ2−element) = p(1 + sin θ).

When condition 14 does not hold, we know that a
three outcome measurement is optimal, and can use
the method outlined above to find this. We first note
that r̂z = 0 for each of our signal states. Thus, as
discussed above, Γ must also have bz = 0, and lies in
the equatorial plane. Further, using equation 11, we
obtain the following three constraints on a, bx, and
by:

a2 − |b|2 = 2(1− 2p)(a+ bx)

a2 − |b|2 = 2p(a+ bx cos θ + by sin θ)

a2 − |b|2 = 2p(a+ bx cos θ − by sin θ)

It is clear from the latter two that by = 0. The
remaining equations are readily solved for a and bx,
giving:

a = bx
p sin2 θ

2 + 1− 2p− p cos2 θ2
3p− 1

bx =
(3p− 1)(1− 2p)

1− 2p− p cos2 θ2

The corresponding probability of correctly identify-
ing the state PCorr is then given by:

PCorr = Tr(Γ) = a

=
(1− 2p)(p sin2 θ

2 + 1− 2p− p cos2 θ2 )

1− 2p− p cos2 θ2

which agrees with the solution provided in [19].
We finally note that we found the region in which

a three outcome measurement was necessary by first
finding the region in which a two-outcome measure-
ment was optimal. If we use our method to find a
candidate Γ in the region where in fact the optimal
measurement has only two outcomes, we find that
even though it is possible to construct Γ, it is not
possible to construct a physically allowed measure-
ment from the conditions 4, and the method fails.
Further, it can sometimes return probabilities that
are greater than 1, clearly indicating that something
has gone wrong. This is illustrated in Fig 1.



6

0.1 0.2 0.3 0.4 0.5
p

-0.5

0.5

1.0

1.5

PCorrect

FIG. 1. The two functions we obtained for PCorr plotted
against p for the optimal two-element (solid blue line)
and three-element (dashed orange line) POVMs - we can
see that for p > 0.373, the three-element POVM appears
to be superior to the two-element POVM. However, this
turns out to no longer be physically realisable, and fails
to satisfy the condition in equation 2. Note that the
function we find for Tr(Γ) is not strictly positive - at no
point have we assumed that Γ must be positive.

V. DISCUSSION

We have presented a method to construct optimal
minimum error measurements from the known nec-
essary and sufficient conditions. If we know which of
a set of states are identified by an optimal measure-
ment, the method presented here allows us to con-
struct four linear conditions on either Γ or Γ−1, from
which we have enough information to reconstruct Γ.
The remaining problem we have not addressed, and
which is common to other methods in the literature
[21, 26], is how to find which states our measurement
should identify. We finish with some comments on
this problem.

In the worst case, we can find the optimal mea-
surement by exhaustive search: we first check if the
no measurement solution is optimal. If yes then
we are done, and if not then we know that k > 1.
We then check whether any measurement identify-
ing just two of the states is optimal. This consists
of constructing optimal measurements for each pair
of states, and checking the condition (2) for the re-
maining N − 2 states in each case. There are

(
N
2

)
such measurements. If none of these are optimal,
then we know k > 2, and so on. This requires con-
structing

∑4
k=1

(
N
k

)
[i.e. O(N4)] candidate Γ op-

erators, and for each one checking O(N) conditions,
thus we require O(N5) operations, in the worst case.

Our detailed results for the case of three symmetric
states with arbitrary priors, which we discuss else-
where [42], indicate that for almost all prior proba-
bilities the optimal measurement has only two out-
comes. Thus we expect that in many cases an opti-
mal measurement will be found faster than O(N5)
operations.

For a given set of states, the method we present
here allows us to characterise the entire parame-
ter space of prior probabilities, beginning with the
no-measurement solution, through those regions in
which a two-outcome measurement is optimal, and
constructing three- and then four-outcome solutions
for the remaining regions, as shown in the example
above. We note also that for specific cases numerical
methods can also be used to determine which states
are identified by an optimal measurement, and once
this is known our method may be used to find an
exact analytical solution for the optimal probability
of correctly identifying the state and to find optimal
measurements.

We have introduced an analytical method, com-
plementary to the geometric approach in the lit-
erature, for constructing optimal measurements for
minimum error state discrimination problems. Our
method constructs linear constraints on the so-called
Lagrange operator Γ, and its inverse Γ−1, from
which the optimal Γ may readily be found for any
qubit state discrimination problem. Although the
constraints we present appear elsewhere in the lit-
erature in a different context, it seems not to have
been recognised that these together give enough in-
formation to construct optimal measurements. We
have further shown that these are applicable to both
pure and mixed states in the qubit case.

In this paper we have discussed the qubit case in
detail. We expect that the linear constraints given
on Γ may also be applied in higher dimensions. The
constraints on Γ−1 may be applied to pure states
in higher dimensions, although the mixed state case
appears less straight-forward, because it is no longer
the case that any mixed state is a mixture of a pure
state and the maximally mixed states. We leave a
full discussion of the generalization to higher dimen-
sions for future work.
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