1,249 research outputs found
Manipulating biphotonic qutrits
Quantum information carriers with higher dimension than the canonical qubit
offer significant advantages. However, manipulating such systems is extremely
difficult. We show how measurement induced non-linearities can be employed to
dramatically extend the range of possible transforms on biphotonic qutrits; the
three level quantum systems formed by the polarisation of two photons in the
same spatio-temporal mode. We fully characterise the biphoton-photon
entanglement that underpins our technique, thereby realising the first instance
of qubit-qutrit entanglement. We discuss an extension of our technique to
generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of
quantum information.Comment: 4 pages, 4 figure
Demonstration of a simple entangling optical gate and its use in Bell-state analysis
We demonstrate a new architecture for an optical entangling gate that is
significantly simpler than previous realisations, using partially-polarising
beamsplitters so that only a single optical mode-matching condition is
required. We demonstrate operation of a controlled-Z gate in both
continuous-wave and pulsed regimes of operation, fully characterising it in
each case using quantum process tomography. We also demonstrate a
fully-resolving, nondeterministic optical Bell-state analyser based on this
controlled-Z gate. This new architecture is ideally suited to guided optics
implementations of optical gates.Comment: 4 pages, 3 figures. v2: additional author, improved data and figures
(low res), some other minor changes. Accepted for publication in PR
Experimental demonstration of Shor's algorithm with quantum entanglement
Shor's powerful quantum algorithm for factoring represents a major challenge
in quantum computation and its full realization will have a large impact on
modern cryptography. Here we implement a compiled version of Shor's algorithm
in a photonic system using single photons and employing the non-linearity
induced by measurement. For the first time we demonstrate the core processes,
coherent control, and resultant entangled states that are required in a
full-scale implementation of Shor's algorithm. Demonstration of these processes
is a necessary step on the path towards a full implementation of Shor's
algorithm and scalable quantum computing. Our results highlight that the
performance of a quantum algorithm is not the same as performance of the
underlying quantum circuit, and stress the importance of developing techniques
for characterising quantum algorithms.Comment: 4 pages, 5 figures + half-page additional online materia
A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers
An automated function control unit was developed to regularly check the
ambient particle number concentration derived from a mobility particle size
spectrometer as well as its zero-point behaviour. The function control allows
unattended quality assurance experiments at remote air quality monitoring or
research stations under field conditions. The automated function control also
has the advantage of being able to get a faster system stability response
than the recommended on-site comparisons with reference instruments. The
method is based on a comparison of the total particle number concentration
measured by a mobility particle size spectrometer and a condensation particle
counter while removing diffusive particles smaller than 20 nm in diameter.
In practice, the small particles are removed by a set of diffusion screens,
as traditionally used in a diffusion battery. Another feature of the
automated function control is to check the zero-point behaviour of the
ambient aerosol passing through a high-efficiency particulate air (HEPA)
filter.
<br><br>
The performance of the function control is illustrated with the aid of a
1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air
quality monitoring network. During the period of concern, the total particle
number concentration derived from the mobility particle size spectrometer
slightly overestimated the particle number concentration recorded by the
condensation particle counter by 2 % (grand average). Based on our first
year of experience with the function control, we developed tolerance criteria
that allow a performance evaluation of a tested mobility particle size
spectrometer with respect to the total particle number concentration. We
conclude that the automated function control enhances the quality and
reliability of unattended long-term particle number size distribution
measurements. This will have beneficial effects for intercomparison studies
involving different measurement sites, and help provide a higher data
accuracy for cohort health and climate research studies
On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes
We study the phase structure and equilibrium state space geometry of
R-charged black holes in , 4 and 7 and the corresponding rotating ,
and branes. For various charge configurations of the compact black
holes in the canonical ensemble we demonstrate new liquid-gas like phase
coexistence behaviour culminating in second order critical points. The critical
exponents turn out to be the same as that of four dimensional asymptotically
AdS black holes in Einstein Maxwell theory. We further establish that the
regions of stability for R-charged black holes are, in some cases, more
constrained than is currently believed, due to properties of some of the
response coefficients. The equilibrium state space scalar curvature is
calculated for various charge configurations, both for the case of compact as
well as flat horizons and its asymptotic behaviour with temperature is
established.Comment: 1 + 33 pages, LaTeX, 25 figures. References adde
Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz
Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid), some Polycyclic Aromatic Hydrocarbon (PAHs) or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008â2009 at the Central European EMEP research station Melpitz (Germany) using an Aerodyne Aerosol Mass Spectrometer (AMS). Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59%) while in winter, the nitrate fraction was more prevalent (34.4%). The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ÎNO3â = 3.6 ÎŒg mâ3) than in summer (ÎNO3â = 0.7 ÎŒg mâ3). The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC) ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc) from â0.66 to â0.4), which could be correlated to hydroxyl radical (OH) and ozone concentrations, indicating a photochemical transformation process. In summer, the organic particulate matter seemed to be heavily influenced by regional secondary formation and transformation processes, facilitated by photochemical production processes as well as a diurnal cycling of the substances between the gas and particulate phase. In winter, these processes were obviously less pronounced (OM/OC ranging from 1.60 to 1.67 and OSc from â0.8 to â0.7), so that organic matter apparently originated mainly from aged particles and long range transport
Entanglement generation by Fock-state filtration
We demonstrate a Fock-state filter which is capable of preferentially
blocking single photons over photon pairs. The large conditional nonlinearities
are based on higher-order quantum interference, using linear optics, an ancilla
photon, and measurement. We demonstrate that the filter acts coherently by
using it to convert unentangled photon pairs to a path-entangled state. We
quantify the degree of entanglement by transforming the path information to
polarisation information, applying quantum state tomography we measure a tangle
of T=(20+/-9)%.Comment: 4 pages, 3 figure
Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Seiffen, Germany
Residential wood burning is becoming an increasingly important cause of air quality problems since it has become a popular source of alternative energy to fossil fuel. In order to characterize the contribution of residential wood burning to local particle pollution, a field campaign was organized at the village of Seiffen (Saxony, Germany). During this campaign, an Aerosol Mass Spectrometer (AMS) was deployed in parallel to a PM<sub>1</sub> high volume filter sampler. The AMS mass spectra were analyzed using Positive Matrix Factorization (PMF) to obtain detailed information about the organic aerosol (OA). Biomass-burning organic aerosol (BBOA), Hydrocarbon-like organic aerosol (HOA), and Oxygenated Organic Aerosol (OOA) were identified and represented 20%, 17% and 62% of total OA, respectively. Additionally, Polycyclic Aromatic Hydrocarbons (PAH) were measured by the AMS with an average concentration of 10 ng m<sup>â3</sup> and short term events of extremely high PAH concentration (up to 500 ng m<sup>â3</sup>) compared to the mean PAH value were observed during the whole measurement period. A comparison with the results from PM<sub>1</sub> filter samples showed that the BBOA factor and the AMS PAH are good indicators of the total concentration of the different monosaccharide anhydrides and PAH measured on the filter samples. Based on its low correlation with CO and the low car traffic, the HOA factor was considered to be related to residential heating using liquid fuel. An influence of the time of the week (week vs. weekend) on the diurnal profiles of the different OA components was observed. The weekdays were characterized by two maxima; a first one early in the morning and a stronger one in the evening. During the weekend days, the different OA components principally reached only one maximum in the afternoon. Finally, the PAH emitted directly from residential wood combustion was estimated to represent 1.5% of the total mass of the BBOA factor and around 62% of the total PAH concentration measured at Seiffen. This result highlights the important contribution of residential wood combustion to air quality and PAH emissions at the sampling place, which might have a significant impact on human health. Moreover, it also emphasizes the need for a better time resolution of the chemical characterization of toxic particulate compounds in order to provide more information on variations of the different sources through the days as well as to better estimate the real human exposure
A Randomized Controlled Trial Translating the Diabetes Prevention Program to a University Worksite, Ohio, 2012-2014
INTRODUCTION: Working adults spend much time at the workplace, an ideal setting for wellness programs targeting weight loss and disease prevention. Few randomized trials have evaluated the efficacy of worksite diabetes prevention programs. This study evaluated the efficacy of a worksite lifestyle intervention on metabolic and behavioral risk factors compared with usual care.
METHODS: A pretest-posttest control group design with 3-month follow-up was used. Participants with prediabetes were recruited from a university worksite and randomized to receive a 16-week lifestyle intervention (n = 35) or usual care (n = 34). Participants were evaluated at baseline, postintervention, and 3-month follow-up. Dietary intake was measured by a food frequency questionnaire and level of physical activity by accelerometers. Repeated measures analysis of variance compared the change in outcomes between and within groups.
RESULTS: Mean (standard error [SE]) weight loss was greater in the intervention (-5.5% [0.6%]) than in the control (-0.4% [0.5%]) group (P < .001) postintervention and was sustained at 3-month follow-up (P < .001). Mean (SE) reductions in fasting glucose were greater in the intervention (-8.6 [1.6] mg/dL) than in the control (-3.7 [1.6] mg/dL) group (P = .02) postintervention; both groups had significant glucose reductions at 3-month follow-up (P < .001). In the intervention group, the intake of total energy and the percentage of energy from all fats, saturated fats, and trans fats decreased, and the intake of dietary fiber increased (all P < .01) postintervention.
CONCLUSION: The worksite intervention improved metabolic and behavioral risk factors among employees with prediabetes. The long-term impact on diabetes prevention and program sustainability warrant further investigation
- âŠ